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Abstract  30 

The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The 31 

association between the pathophysiological features and the serum protein signatures of IPF 32 

currently remains unclear. The present study analyzed the specific proteins and patterns 33 

associated with the clinical parameters of IPF based on a serum proteomic dataset by Data-34 

Independent Acquisition (DIA) using mass spectrometry. Differentiated proteins in sera 35 

distinguished in IPF patients into three subgroups in signal pathways and overall survival. 36 

Aging-associated signatures by WGCNA coincidently provided clear and direct evidence that 37 

aging is a critical risk factor for IPF rather than a single biomarker. LDHA and CCT6A 38 

expression, which were associated with glucose metabolic reprogramming, were correlated 39 

with high serum lactic acid content in the patients with IPF. Cross-model analysis and machine 40 

learning showed that a combinatorial biomarker accurately distinguished IPF patients from 41 

healthy subjects with an AUC of 0.848 (95% CI = 0.684–0.941) and validated from another 42 

cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables 43 

understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis 44 

and treatment decisions. 45 

Keywords: Serum proteome, Molecular subtype, machine learning, indicator panel, 46 

combinatorial biomarker  47 

 48 

 49 

 50 

 51 

 52 
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Introduction  53 

IPF is a chronic and fatal progressive fibrotic lung disease with a reported median survival of 54 

3–5 years (1) (2). The heterogeneity of IPF and the various pathophysiological mediators 55 

involved in its clinical progression limit its diagnosis and treatment. Aging is one of the critical 56 

risk factors for IPF, with increasing evidence highlighting the important role of senescence in 57 

IPF(3). Cellular senescence leads to DNA damage, cell cycle arrest, telomere shortening(4), 58 

mitochondrial dysfunction, metabolic reprogramming, resistance to apoptosis, and deficient 59 

autophagy. Mitochondrial dysfunction, including the leakage of high energy electrons from the 60 

electron transport chain (ETC), disrupted cristae, and a diminished capacity for oxidative 61 

phosphorylation, establish a close link between senescence and IPF(5). Metabolic dysfunction 62 

alters processes during lung tissue repair, as well as crucial metabolic pathways such as 63 

augmented glycolysis and increased fatty acid oxidation, which are important drivers of 64 

fibroblast activation(6). In particular, altered lactate metabolism may be an underlying feature 65 

of IPF and a novel clinical diagnostic marker(7, 8).  66 

The use of machine learning tool did not reach a formal recommendation in American Thoracic 67 

Society（ATS）/European Respiratory Society（ERS）/Japanese Respiratory Society（JRS)/ 68 

Latin American Thoracic Society （ ALAT) clinical practice guideline, but more of a 69 

consideration in specific circumstances at certain centers to identify diagnostic markers and to 70 

combine these molecular markers with current diagnostic modalities in the multidisciplinary 71 

diagnosis of IPF. Novel biomarkers integrated into clinical diagnosis can include circulating 72 

markers or molecular signatures obtained from less invasive sampling(9). To date, most 73 

biomarkers are the molecules abundant enriched and associated with pathophysiological 74 
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process in a specific disease. Proteomic strategies have allowed extensive assessment of larger 75 

patient cohorts and the identification of novel biomarkers, while reducing the need for invasive 76 

acquisition and analysis of blood and body fluids(10). Improvements in deep proteomes may 77 

result in the identification of individual biomarkers or biomarker panels that may not be directly 78 

involved in the disease pathophysiology and may only be associated with it. These biomarkers 79 

may have the potential to better understand the pathophysiology of IPF, not only for diagnostic 80 

but also for therapeutic purposes.  81 

Previous studies found that aberrations in complement activation and oxidative damage, 82 

haptoglobin-related protein were identified as candidate marker in IPF using the label-free 83 

plasma proteomics(11). Here, we wished to gain further insights into the changed serum 84 

proteomic of IPF patients, to obtain the proteins associated with the disease pathophysiology. 85 

A global correlation network related to clinical traits was constructed, and machine learning 86 

was used to identify a combinatorial biomarker.  87 

 88 

Materials and methods  89 

Experimental Design and Statistical Rationale  90 

The purpose of this study to identify signatures associated with the pathogenesis of idiopathic 91 

pulmonary fibrosis in serum from IPF patients. The workflow is depicted in Figure S1. Serum 92 

samples were collected from 30 IPF patients as a cohort, IPF was diagnosed based on 93 

ATS/ERS/JRS/ALAT Clinical Practice Guidelines (12). Subjects were obtained at diagnosis 94 

and followed by physicians according to institutional practices, including by high-resolution 95 

computed tomography (HRCT) and pulmonary function tests (PFTs). All patients with IPF 96 
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underwent routine blood tests, including measurements of lactic acid concentrations and some 97 

antibodies. None of the included patients had evidence of autoimmune syndromes, malignancy, 98 

infections, or drug or occupational exposures associated with lung fibrosis. Serum samples from 99 

30 healthy volunteers were collected as a control group, of which all participants underwent a 100 

full medical examination prior to inclusion in the study. The validation cohort consisted of an 101 

additional patient with IPF for the ELISA. The study was approved by the Henan Provincial 102 

Chest Hospital Medical Research Ethics Committee (No. 2020-03-06). Oral and written 103 

informed consent was obtained from all participants of this study. All samples used in this study 104 

were collected at Henna Provincial Chest Hospital according to the guidelines in the 105 

Declaration of Helsinki. The demographic and clinical characteristics of the cohorts are 106 

provided, which including the summary data with statistics on age, sex, smoking status in Table 107 

1 and other characteristics in the Table S1. A public IPF cohort (PRIDE project PXD010965) 108 

that included 19 healthy individuals and 17 IPF patients was used to validate the accuracy of 109 

the machine-learning-based classification of IPF. The animal handling procedures followed the 110 

Henan Normal University Institutional Animal Care and Use Committee (IACUC, SMKX-111 

2019S002) guidelines, which coordinate with the Association of Animal Behavior and National 112 

Regulations. 113 

Serum sample preparation 114 

Blood samples from IPF patients and healthy volunteers were taken from a vein in the cubital 115 

fossa. The blood collection was done into commercial Monovette tubes containing tripotassium 116 

ethylenediaminetetraacetic acid as the anticoagulant and whole blood glass tubes with 117 

anticoagulant. The samples were centrifuged for serum separation (2000 rpm for 10 min, +4 ◦C) 118 
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immediately after collection. The supernatant was frozen at −80 ◦C before liquid 119 

chromatography-mass spectrometry (LC-MS) analysis.  120 

The 14 most abundant serum proteins were removed from each sample using commercial 121 

depletion kits (High-Select™ Top14 Abundant Protein Depletion Mini Spin Columns), 122 

according to the manufacturer’s instructions. Following depletion, the proteins were denatured, 123 

reduced, alkylated, digested into peptides, and desalted using a C-18 column for LC-MS/MS 124 

analysis. 125 

 126 

High-pressure liquid chromatography and mass spectrometry 127 

Samples were subjected to LC-MS/MS, consisting of an EASY-nLC 1200 system coupled to a 128 

nano-electrospray ion source and a Fusion Lumos Orbitrap (Thermo Fisher Scientific). Purified 129 

peptides were separated on 150 μm I.D. × 15 cm columns (C18, 1.9 μm, 120Å, Dr. Maisch 130 

GmbH). Each column was loaded with about 0.5 μg peptides in buffer A (0.1% formic acid), 131 

followed by elution at a flow rate of 450 nL/min with a linear gradient of 3–30% of buffer B 132 

(0.1% formic acid, 80% (v/v) acetonitrile) for 35 min, 75% buffer B for 7 min, 98% buffer B 133 

for 1 min, and a wash with 98% buffer B for 2 min. The column temperature was maintained at 134 

60°C using a Peltier element containing an oven developed in house.  135 

MS spectra were acquired with a Data-Independent Acquisition (DIA) method. The DIA-MS 136 

method consisted of an MS1 scan from 300 to 1,400 m/z range (AGC target of 4×105, maximum 137 

injection time of 50 ms) at a resolution of 60,000 and 30 DIA segments (AGC target of 5×104, 138 

maximum injection time of 22 ms) at a resolution of 15,000. 139 

 140 
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Library-based DIA data analysis and quality control 141 

To build the spectral library, we acquired 128 DDA files on a Fusion Lumos Orbitrap mass 142 

spectrometer in DDA mode, which was used as reference spectra libraries. A library was built 143 

by Skyline-daily (22.2.1.278, University of Washington, USA) for DIA analysis, which were 144 

composed of various body fluids and organ tissue samples from 64 individuals, covering blood, 145 

hydrothorax, joint effusion, bile, ascites, cerebrospinal, urine, etc., with a deep fractionation 146 

ranging from 7 to 31. For Skyline library building, carbamidomethyl (C) was set as the fixed 147 

modification, and acetyl (protein N-term) and oxidation (M) were set as the variable 148 

modifications. Two missed trypsin cleavages were allowed. Precursor ion score charges were 149 

limited to +2, +3, and +4. The precursor and fragment tolerance were set as dynamic. Finally, 150 

a library containing 68,781 peptides and 4,437 proteins was built. In our previous research, the 151 

DIA library has been used for blood molecular markers for the pathophysiology and clinical 152 

progress of COVID-19 (13). For Skyline analysis, the default setting was used for library-based 153 

DIA analysis according to the standard workflow in Skyline 154 

(https://skyline.ms/_webdav/home/software/Skyline/@files/tutorials). A total of 60 raw files’ 155 

reports were exported by Skyline DIA analysis, and were merged into an integrated expression 156 

matrix including the expression of each single protein, of which all identified distinct peptides 157 

were used for the corresponding protein quantification. The detection Q value was set to 5% at 158 

the peptide and protein levels. Proteome qualification was performed as previously reported 159 

with the iBAQ algorithm(14), followed by normalization to the fraction of the total (FOT), 160 

defined as a protein’s iBAQ divided by the total iBAQ of all identified proteins within one 161 

sample, thus representing the normalized abundance of a particular protein across samples. 162 

Finally, the FOT values were further multiplied by 105 for ease of presentation, and missing 163 

Jo
urn

al 
Pre-

pro
of

https://skyline.ms/_webdav/home/software/Skyline/@files/tutorials


 7 
 

values were replaced by the minimal value.  164 

The quality of proteomic data was ensured at multiple levels. Instrument performance was 165 

evaluated using a whole cell extract of HEK293T cells. To avoid carryover, blank samples 166 

(buffer A) were run after every five injections. The consistency of sample collection and 167 

handling was validated by assessing the abundance of the quality markers FGA, FGB, and FGC. 168 

 169 

Differential protein analysis 170 

The differential expression of proteins in IPF patients and healthy controls was also analyzed 171 

by Student’s t-tests. Proteins differentially expressed with p-values < 0.05 and fold changes > 172 

1.5 or < 2/3 were visualized using an R package heatmap. Between-group analysis of DEPs was 173 

performed using paired two-class analysis of the same R package with an FDR threshold of 174 

0.05.  175 

 176 

Pathway enrichment analysis and functional annotation 177 

The biological characteristics of the three IPF subtypes and the proteins differentially expressed 178 

by IPF patients and healthy controls were determined by pathway enrichment analysis with 179 

Reactome. The statistical significance of pathway enrichment was determined by Fisher’s exact 180 

test and pathways with an FDR threshold of 0.05 were regarded as being significantly regulated. 181 

 182 

Proteome molecular subtyping of IPF 183 

Prior to clustering analysis, proteins that were expressed in more than 25% of patient samples 184 

were selected (n = 1190) (Table S4). The serum proteomic subtypes of IPF were identified by 185 
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consensus clustering (R package Consensus Cluster Plus v.1.48.0) (15). A total of 1190 proteins 186 

were subjected to k-means clustering with up to six clusters. The consensus matrix of k = 3 187 

showed clear among-cluster separation (Figure S3A), and the cumulative distribution function 188 

of the consensus matrix for each k-value was measured. Clustering by k = 3 resulted in the 189 

lowest proportion of ambiguous clustering. To determine the correlations between proteomic 190 

subtypes and clinical features, categorical variables, including age, gender, smoke status, and 191 

HRCT characteristics, were assessed by Fisher’s exact tests. 192 

 193 

WGCNA analysis 194 

To identify differentially co-expressed gene modules, WGCNA was applied to the proteins that 195 

were expressed in more than 67% of patient samples (n =687). WGCNA was performed in R 196 

(R Core Team, 2019) using a WGCNA package (16). Module eigenproteins were calculated as 197 

the first principal components of the co-expressed genes in the module (17, 18). The eigengenes 198 

of each module were used to measure the association between a module and clinical information. 199 

The eigengene-based connectivity (kME) was used to represent the strength of a gene’s 200 

correlation with other gene module members. 201 

 202 

Machine-learning-based selection of biomarker combinations of IPF 203 

Biomarker combinations were identified using the random forest method, a machine learning 204 

method that can predict the value of a response variable. Data with coefficients of variation 205 

(CV) less than 0.5 were selected as candidate reservoirs, with no more than four proteins 206 

randomly selected to form the potential optimal biomarker combination (OBC), and 5,000 207 
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potential OBCs were prepared. Each candidate OBC was subjected to 5-fold cross-validation, 208 

with the original dataset randomly divided 4:1 into a training set and a verification set. The 209 

training set was used to train the model, and the verification set was used to evaluate the model. 210 

In penalized logistic regression (PLR) , the weights of four proteins were optimized iteratively 211 

using the least shrinkage and selection operator (Lasso, L1 regularization) penalty and the ridge 212 

regression (L2 regularization) penalty. The combination with the highest AUC value was 213 

selected. To simplify OBC, sets of any three of the four proteins were selected, resulting in four 214 

combinations, and the AUC values of these combinations were compared with the AUC value 215 

of OBC. The combination with an AUC value closest to that of OBC was selected as the final 216 

combination. The PLR algorithm was implemented in R 4.1.2 with the glmnet package. 217 

 218 

Survival analysis 219 

Univariate Cox regression analysis was conducted to determine the relationship between the 220 

expression of proteins and prognosis of IPF patients. Proteins with a p-value < 0.05 were 221 

regarded as prognostic proteins. After that, patients were divided into high-risk and low-risk 222 

groups by setting the median value of risk scores as cut-off value. The overall survival (OS) of 223 

these two groups was calculated by the Kaplan-Meier method with log-rank test. All statistical 224 

analyses were performed using Prism 8 software and the R package “survival”, with statistical 225 

significance defined as p < 0.05.  226 

 227 

Cell culture 228 

The human lung fibroblast cell line (MRC-5) was purchased from the ATCC (CCL-171). Cells 229 
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were cultured in DMEM supplemented with 10% fetal bovine serum and a 1% antibiotic-230 

antimycotic solution at 37°C in 5% CO2. 231 

 232 

Plasmids RNA interference and transfection 233 

The human CCT6A gene was cloned into the pCDNA3.1 plasmid (Generay Biotech, CN). 234 

Fibroblasts grown to 80–90% confluence were transfected with this plasma using 235 

Lipofectamine 3000 reagent according to the manufacturer’s protocol. The CCT6A siRNA 236 

transfection target sequence, 5′-GTGTCATTAGAGTATGAGA-3′, and a negative control were 237 

purchased from RiboBio. The siRNAs (75 nM) were transfected into cells using INVI DNA 238 

RNA Transfection Reagent (Invigentech) according to the manufacturer’s instructions. 239 

 240 

Protein extraction and western blot analysis 241 

Mouse lung tissue samples and cultured cells were lysed in RIPA lysis buffer. Equal amounts 242 

of protein were separated on SDS-PAGE and transferred to PVDF-membranes, which were 243 

hybridized overnight with appropriate primary antibodies. The membranes were washed and 244 

incubated with horseradish peroxidase-conjugated secondary antibodies, followed by 245 

visualization using the Odyssey Fc Dual-Mode Imaging System (LI-COR, USA), according to 246 

the manufacturer’s instructions. 247 

 248 

Immunofluorescence staining 249 

Transfected fibroblasts were fixed with 4% paraformaldehyde and permeabilized with 0.3% 250 

Triton X100/PBS. Cells were incubated with primary antibodies at 4°C overnight followed by 251 
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incubation with fluorescent-labeled secondary antibodies for 30 min at 37℃. Images were 252 

visualized using an Axio Imager D2 (Zeiss, GER). 253 

 254 

Extracellular flux technology 255 

The extracellular acidification rate (ECAR) of fibroblasts was measured using a Seahorse XF96 256 

Extracellular Flux Analyzer (Seahorse Bioscience, USA). All assays were performed using a 257 

seeding density of 30,000 cells/well in 200 μL DMEM in an XF96 cell culture microplate 258 

(Seahorse Bioscience). ECAR was measured after sequential addition of glucose, oligomycin, 259 

and 2-DG, to reach working concentrations of 10 mM, 1 μM, and 50 mM, respectively.  260 

 261 

LDH activity 262 

LDH activity was assessed using LDH activity assay kits, according to the manufacturer’s 263 

instructions. Briefly, extract was added to the transfected cells, and the cells were disrupted by 264 

ultrasound and centrifuged at 8,000 g for 10 min at 4°C. LDH activity was evaluated by 265 

measuring the amount of pyruvate produced. 266 

 267 

Lactate assay 268 

The intracellular and tissue concentrations of lactate were determined using Lactate Assay Kits, 269 

according to the manufacturer's instructions. Tissues or cells were homogenized in four volumes 270 

of Lactate Assay Buffer and centrifuged at 13,000g for 10 minutes to remove insoluble material. 271 

The samples were deproteinized with a 10 kDa MWCO spin filter to remove lactate 272 

dehydrogenase, and the absorbance of the soluble fraction at 570 nm was measured. 273 
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 274 

Immunoassays  275 

Serum protein concentrations were measured using commercially available ELISA kits, as 276 

described by the manufacturer. Measure the absorbance of each sample at 450nm with 277 

Microplate Reader（Thermo Fisher）. For immunohistochemistry (IHC) staining, paraffin-278 

embedded tissue sections(5 μm thick) were de-paraffinized and dehydrated, followed by 279 

antigen retrieval according to standard procedures. Tissue samples were incubated with specific 280 

antibodies, with images captured by AxioScan.Z1 (Zeiss).  281 

 282 

Statistical analysis 283 

GraphPad Prism 8.0 and R was used for statistical analysis. The details of experiments can be 284 

found in the methods and figure legends. Genes with p-values < 0.05 and fold changes > 1.5 or 285 

other thresholds were visualized using R package heatmaps. Between-group analysis of DEPs 286 

was performed using paired two-class of the same R package with an FDR threshold of 0.05. 287 

Pathway enrichment to identify pathway alterations was analyzed using Reactome. Differential 288 

analysis of samples with different phenotypes was performed using Fisher’s exact t-tests, with 289 

DEPs compared in groups of patients with IPF and healthy controls. Spearson rank analysis 290 

was used to analyze the correlation. GraphPad Prism 8.0 was used to analyze the quantitative 291 

results of the cell / animal experiments and ELISA results. Significant differences between 292 

groups were evaluated using the student’s t-test or analysis of variance (ANOVA). p< 0.05 was 293 

considered to be statistically significant. 294 

 295 
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Results  296 

Serum proteome profiling of IPF 297 

The serum proteomic landscape was investigated in 30 patients with IPF and 30 healthy subjects 298 

differing in demographic and clinical characteristics, including by gender, age, smoking status, 299 

features of HRCT, and others (Table 1, Table S1). A data-independent acquisition (DIA) 300 

strategy was adopted (Figure S1), and the consistency of the MS performance of the whole 301 

HEK293T cell extract was assessed using Spearman correlation coefficients (average 302 

correlation coefficient; R = 0.89) (Figure S2A). The abundance profiles of the quality markers 303 

FGA, FGB, and FGG indicated that the collection and handling of the samples were regular(19) 304 

(Figure S2B). About 2,383 gene products were collected from the 30 healthy subjects and the 305 

30 patients with IPF (Figure 1A), with the number of proteins per sample ranging from 703 to 306 

1,014 (median 892) (Figure 1B, Table S2). The abundance of the identified proteins varied 307 

widely, with APOA1 being most abundant and ATP6V1A being the least abundant (Figure 1C). 308 

Sixty-seven significantly differentially expressed proteins (DEPs) (P < 0.05 and a differential 309 

expression ratio [IPF/N] >1.5 or <0.67) were identified (Figure S2C, Table S3). Of the DEPs 310 

3.7% upregulated, whereas 3.8% of the significantly downregulated proteins in patients with 311 

IPF ( Figure S2D)  312 

 313 

Three molecular subtypes of IPF and their association with clinical features  314 

Consensus Cluster Plus (Table S4, Figure S3A) analysis of the top 1,190 DEPs identified three 315 

distinct patient clusters (S-I,S-II,S-III) with differences in survival (Figure 1D). The 30 patients 316 

with IPF were followed-up for a median 27.9 months (range, 1–58 months). Association 317 
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analysis between IPF subtypes and OS demonstrated that OS was longest in the S-II and shortest 318 

in the S-III (log-rank P = 0.026, Figure 1E). IPF patients in the three proteomic subgroups 319 

showed distinct molecular features, including differences in subgroup-specific pathways and 320 

expression of representative proteins (Figure 1F, G, Figure S3B, Table S5). Higher expression 321 

of BMP2K, which has been implicated in endocytosis and cell differentiation(20), was 322 

associated with a longer OS in the S-I; and a high level of PI16, a shear stress and inflammation-323 

regulated inhibitor of MMP2(21), increased OS in the S-II. By contrast, elevated expression of 324 

ATP5A1, a subunit of mitochondrial ATP synthase, was associated with a poorer OS in the S-325 

III (Figure 1H). These specific protein signatures may enable classification of these IPF 326 

subgroups. The associations between proteomic subtypes and clinical features were examined 327 

using Fisher’s exact tests for categorical data and Wilcoxon rank-sum tests for continuous data. 328 

We found that younger age was closely associated with longer OS in the S-II (Figure 1I), 329 

indicating that age affects the survival of patients with IPF(22).  330 

 331 

Aging-associated signatures highlighted in the sera of IPF patients 332 

Weighted gene correlation network analysis (WGCNA) of a single dataset composed of samples 333 

from all 30 IPF patients with 686 proteomic variables and ten clinical traits yielded the global 334 

correlation network heatmap shown in Figure 2A (Table S6). Module-trait relationships analysis 335 

showed that the module MEturquoise was positively associated with age patterns (Figure 2B). 336 

The signatures correlated with age were clustered, and the top altered proteins in this module 337 

mainly belonged to the S-III subgroup with elder patients (Figure 2C, D). Cellular senescence-338 

associated proteins, such as KL (Klotho), HSP90AB1, and SERPINE1; mitochondrial 339 
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dysfunction-associated proteins, including HSPD1, ATP5A1, and SDPR; and several other 340 

proteins associated with DNA repair and the cell cycle, such as HIST2H2BE, NCK1, S100A8, 341 

and CDK10, were significantly upregulated in S-III subgroup. In line with our findings, 342 

VCAM1 and POSTN expression correlated positively with age(23), whereas UBA, CD14, 343 

ORM1, and ORM2, which are involved in inflammatory responses, and CREM and CAMKK1, 344 

which are involved in cell apoptosis, correlated negatively with age in the S-III subgroup. 345 

SERPINA4, an age-related marker in lung disease(24), was decreased in the S-III subgroup 346 

(Figure 2D). Moreover, increased expression of HSP90AB1 and reduced expression of 347 

CAMKK1 were associated with poor survival in patients with IPF (Figure 2E).These protein 348 

correlation profiles reflect the complex relationships between age and cellular senescence, 349 

mitochondrial dysfunction, DNA repair and replication, inflammatory response, and cell 350 

apoptosis.  351 

 352 

Integration of specific molecular markers with high level of lactic acid for 353 

multidisciplinary diagnosis of IPF 354 

Increased glycolysis contributes to IPF by regulating glucose metabolic enzymes; these 355 

enzymes are secreted and can be measured in blood. HK1, PFKP, ENO1/3, GAPDH, LDHA, 356 

and ALDOB were significantly differentially expressed in the IPF and control groups (Figure 357 

3A, B). Lactate dehydrogenase (LDH) converts pyruvate to lactic acid during glycolysis, with 358 

human LDH, consisting of two subunits, LDHA and LDHB, being a key glycolytic terminal 359 

enzyme that catalyzes the interconversion of pyruvate and lactate in the anaerobic glycolytic 360 

pathway. Compared with controls, LDHA and LDHB were altered in the sera of patients with 361 
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IPF (Figure 3C), with survival analysis showing that LDHA may be a significant predictor of 362 

poor prognosis in these patients (Figure 3D). Proteomics data showed that the level of serum 363 

LDHA was upregulated in IPF patients with high lactate content (>1.7 mmol/L, Table S1,Table 364 

S2), based on routine blood tests by ELISA. In addition, the expression of CCT6A, which was 365 

predicted to act through an interactive network of signaling pathways with LDHA, was 366 

increased in the serum of patients with IPF (Figure 3E). To explore the association of CCT6A 367 

with high serum lactic acid content, we measured the levels of CCT6A in IPF patients and the 368 

bleomycin model of lung fibrosis in mice. ELISA analysis confirmed that the level of CCT6A 369 

was higher in IPF patients in an independent cohort (Figure 3F, Table S7), and the increases 370 

were in accordance with MS data (Figure S4). IHC staining of lung tissue from patients with 371 

IPF showed that CCT6A was mainly expressed by macrophages and the alveolar epithelium 372 

surrounding the fibrotic interstitium, but was weakly expressed in normal alveolar epithelium 373 

(Figure 3G). CCT6A expression was also significantly increased in the bleomycin model of 374 

lung fibrosis in mice (Figure 3H, I). Moreover, the downregulation of GAPDH observed in the 375 

sera of patients with IPF (Figure 3 B) was also observed in fibrotic mouse lungs (Figure 3J). 376 

The increased levels of serum CCT6A in patients with IPF were associated with elevated lactic 377 

acid concentrations, which may lead to pulmonary fibrosis. 378 

To demonstrate that the changes of CCT6A have a direct effect on fibroblast phenotype, CCT6A 379 

was overexpressed or knocked down in MRC-5 cells. Overexpression of CCT6A significantly 380 

enhanced the expression of α-SMA in MRC-5 cells (Figure 4A-C), whereas knockdown of 381 

CCT6A reduced the levels of FN-1 and Col1A1 (Figure 4D, E), indicating that CCT6A 382 

promotes the development of lung fibrosis. To further clarify the association of increased 383 
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CCT6A with the high content of lactic acid in the sera of patients with IPF, real-time 384 

extracellular acidification rate (ECAR) was measured using the Seahorse XFe96 Analyser 385 

(Agilent Technologies). Overexpression of CCT6A was associated with significant increases in 386 

glycolysis rate and glycolytic capacity (Figure 4F), as was lactate production in the supernatants 387 

of MRC-5 cells and in the lungs of bleomycin-treated mice (Figure 4G, H). Cells 388 

overexpressing CCT6A also showed significant upregulation of the expression of LDHA in 389 

mRNA and protein level, and decreased production of pyruvate (Fig 4I-L). Collectively, these 390 

results show that CCT6A plays an important role in glycolysis through regulation of LDHA and 391 

drives pulmonary fibrosis.  392 

 393 

Machine-learning-based selection of combinatorial biomarkers for classification of IPF  394 

A machine-learning algorithm involving potential combinatorial biomarkers was developed to 395 

classify IPF patients and healthy subjects (Figures S5A). Candidate biomarkers were selected 396 

from the significantly differentially expressed proteins using PLR for model training and 397 

parameter optimization. This process generated a set of combinatorial biomarkers, including 398 

serpin G1 (SERPING1), kininogen 1 (KNG1), ficolin 3 (FCN3), and transthyretin (TTR). The 399 

5-fold cross-validation AUC value of this four-protein combinatorial that differentiated IPF 400 

patients and healthy individuals was 0.826 (95% confidence interval [CI] = 0.700–0.800) 401 

(Figure 5A, B). The corresponding matrix demonstrated that the training model could correctly 402 

classify different samples with high accuracy (Figures 5C). The accuracy of the machine-403 

learning-based classification of IPF was validated in a public IPF cohort (PRIDE project 404 

PXD010965) that included 19 healthy individuals and 17 IPF patients. The AUC value for the 405 
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diagnosis of IPF was 0.848 (95% CI = 0.684–0.941) (Figure 5 D, E), with the data matrix 406 

showing promising accuracy in this independent cohort (Figures 5F). The combinatorial 407 

biomarkers predicted poorer, but not significantly different, OS in our cohort (Figures 5G). 408 

Lack of survival information prevented determination of the ability of the combinatorial 409 

biomarkers to predict OS in the public dataset, but these markers exhibited significant 410 

performance based on their relative abundances (Figures 5H, Figures S5B). 411 

Our previous study showed that thyroid hormone inhibits lung fibrosis in mice(25). Because 412 

TTR transports thyroid hormones in plasma and cerebrospinal fluid, the serum concentrations 413 

of TTR were measured by ELISA in an independent cohort. Serum TTR concentrations were 414 

significantly lower in IPF patients than in normal controls (Figure 5I). Although low 415 

transthyretin levels were reported to correlate with age and stroke(26), serum TTR level did not 416 

significantly correlate with age in our patient cohort (Figure 5J). 417 

 418 

Discussion  419 

Poor molecular understanding of the heterogeneity of IPF can impede determination of its 420 

pathogenesis, leading to inefficient treatment and an inability to predict its occurrence. To 421 

address this problem, we sought to determine the serum protein profile in patients with IPF. 422 

Analysis showed that IPF could be classified into three subtypes, which exhibited its 423 

heterogeneity and diversity. This study also found that CCT6A was associated with the elevated 424 

levels of lactic acid in IPF. A global correlation network was developed to identify the indicators 425 

of senescence associated with IPF; a combinatorial predictive biomarker that can be used to 426 

distinguish patients with IPF from healthy subjects. 427 

Molecular subtyping can stratify patients into subtypes associated with clinical features, 428 
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responses to treatment, and biological characteristics(27). IPF could be classified into three 429 

subtypes based on serum proteomes, with these proteomic subtypes differing in signaling 430 

pathways and clinical outcome. Specifically, patients with the S-III subtype had a poorer 431 

prognosis. In addition, a functional module related to senescence was found to be associated 432 

with the S-III subtype. Because aging is a multifactorial series of molecular alterations that 433 

result in progressive reduction of lung tissue function, the involvement of proteins associated 434 

with various physiological processes related to aging was not surprising, serum proteins may 435 

be candidate markers of aging. The altered-senescence-associated protein patterns in S-III were 436 

related to aging rather than to a single biomarker, providing clear and direct evidence that aging 437 

is a critical risk factor for IPF.  438 

Coupling of altered proteins under defined conditions could exploit the information content of 439 

serum and identify biomarkers likely to be of clinical value. MS-based proteomics can enable 440 

assessment of the roles of blood proteins in clinical diagnoses, as well as identifying new 441 

biomarkers and biomarker panels. Analysis of serum proteomes can result in the detection of 442 

secreted metabolic enzymes, including those involved in enhancing glycolysis, upregulation of 443 

the key metabolic enzyme LDHA was indicative of poorer clinical outcomes. Therefore, the 444 

presence of high levels of CCT6A and LDHA and high serum lactic acid concentrations may 445 

be diagnostic of IPF. 446 

Use of machine learning to explore the ability of combined biomarkers to predict disease 447 

outcomes and prognosis is a promising strategy to improve the accuracy of diagnostic 448 

performance. Intriguingly, SERPING1 itself is a candidate biomarker in patients with 449 

tuberculosis(28), downregulation of KNG1 expression was observed in patients with sepsis-450 
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induced ALI(29), and TTR is a specific biomarker for the clinical diagnosis of non-small cell 451 

lung carcinoma(30). In the present study, these three proteins were selected by the machine-452 

learning algorithm as the most important indicators for classification of IPF, showing high 453 

specificity and sensitivity in two independent patient cohorts. Furthermore, the combinatorial 454 

biomarker panel and clinical data was found to be prognostic in this patient cohort.  455 

The present study had several limitations. The number of patients included in the study cohort 456 

was small, as were the numbers in each of the subgroups, suggesting the need for studies in 457 

larger patient cohorts, as well as validation of these biomarkers by methods other than serum 458 

proteome analysis. Moreover, the kits used to process serum samples can lead to the depletion 459 

of highly abundant proteins. For example, EDTA could interfere with the precise determination 460 

of MMPs, such as MMP7 and CCL18, previously shown to be markers of IPF(31). Taken 461 

together, our data characterized the molecular subtypes of IPF and identified a biomarker panel 462 

associated with the pathophysiology of IPF. These results strongly suggest that measuring 463 

CCT6A and LDHA, along with high serum levels of lactic acid, could be diagnostic of IPF. 464 

Additional studies in larger patient cohorts are needed to determine whether the combination of 465 

these three biomarkers could accurately predict IPF. 466 

 467 

Data and materials availability 468 

The raw mass spectrometry (MS) proteomics data generated in this study have been deposited 469 

in the ProteomeXchange Consortium via the iProX partner repository (http://www.iprox. 470 

cn/)(32) under Project ID IPX0004334000, and can be accessed with a direct link 471 

https://www.iprox.cn/page/PSV023.html;?url=1664089052598znXd with the password: ASQd. 472 
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Figure legends  597 

Fig. 1 Proteomic features of the IPF subgroups. Molecular subtyping of IPF was based on 598 

altered proteomes and their correlations with clinical features. 599 

A. Cumulative number of proteins identified in serum samples from 30 healthy controls (blue 600 

dots) and 30 patients with IPF (red dots). 601 

B. Numbers of identified proteins in serum samples from 30 healthy controls (blue dots) and 602 

30 IPF patients (red dots). 603 

C. Relative abundance of 2,314 serum proteins. Several proteins ranged widely in abundance 604 
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(black dots). 605 

D. Consensus clustering analysis of the proteomic profiling identifying three subtypes in the 606 

IPF cohort. 607 

E. Kaplan–Meier analyses of overall survival (OS) of patients in the S-I (n=16), S-II (n=4), 608 

and S-III (n=10) subgroups. (P-values calculated by two-sided log-rank tests). 609 

F. Heat map of the over-represented proteins in the three IPF subtypes.  610 

G. Proteins differentially expressed in the three IPF subtypes. 611 

H. Associations between expression of BMP2K, PI16, and ATP5A1 proteins, and overall 612 

survival (Kaplan–Meier analysis, P-value from log-rank test, high means IPF/N >median 613 

value). 614 

I. Age with the three IPF proteomic subtypes (P-values calculated by Fisher’s exact tests).  615 

Fig. 2 WGCNA identification of modules of highly correlated genes and assessment of their 616 

relationships to clinical variables. 617 

A. Heatmap of the weighted gene co‑expression network. The plot indicates the TOM among 618 

all genes analyzed. Genes in columns and their corresponding rows are hierarchically 619 

clustered by cluster dendrograms, which are presented along the top and left side of the plot. 620 

B. Module-trait relationships between six modules and ten clinical traits. 621 

C. Heatmap of the change in genes in the module of age. 622 

D. Heatmap of the age-related genes in the three subgroups. 623 

E. Associations of HSP90AB and CAMKK1 expression with clinical outcomes in 30 IPF 624 

patients. 625 

Fig. 3 Aberrantly expressed metabolic enzymes involved in enhanced glycolysis in serum 626 
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proteomes of patients with IPF. 627 

A. Pathway schematic showing DEPs (t-test, p < 0.05) mapped onto glucose metabolism 628 

pathways. 629 

B. Boxplots showing proteins differentially expressed by IPF patients with normal and above-630 

normal levels of serum lactate (P-values calculated by t-test). 631 

C. Violin plots of LDHA and LDHB expression in 30 healthy controls (blue dots) and 30 IPF 632 

patients (red dots). 633 

D. Associations of LDHA expression with clinical outcomes in IPF patients (p-values 634 

calculated by log-rank tests). 635 

E. Violin plots of CCT6A expression in 30 healthy controls (blue dots) and 30 IPF patients 636 

(red dots). 637 

F. ELISA validation of CCT6A expression in IPF patients (P-values calculated by t-tests). 638 

G. IHC staining showing CCT6A expression in lungs from healthy controls and IPF patients. 639 

H. IHC staining showing CCT6A expression in the bleomycin model of lung fibrosis in mice. 640 

I. Representative immunoblots of whole lung lysates of mice incubated with antibodies 641 

against CCT6A and GAPDH. 642 

J. Western blots of CCT6A expression normalized to β-actin.  P < 0.05, as determined by 643 

ANOVA. 644 

Fig. 4 Association of changes in CCT6A expression and high lactic acid concentrations with 645 

the fibroblast phenotype. 646 

A. Representative immunoblots showing CCT6A and α-SMA expression in MCR5 cells 647 

transfected with control plasmid and plasmid overexpressing CCT6A. 648 

*

Jo
urn

al 
Pre-

pro
of



 29 
 

B. Western blots of CCT6A expression normalized to β-actin.  P < 0.05, as determined by 649 

ANOVA. 650 

C. Representative images of α-SMA immunofluorescence staining of MRC5 cells. Original 651 

magnification, ×100. Scale bars: 5 μm.  652 

D. Representative immunoblots showing CCT6A, COLA1, and FN expression in MCR5 cells 653 

transfected with control and CCT6A siRNAs. 654 

E. Western blots of CCT6A expression normalized to β-actin. * P < 0.05, ** P < 0.01, as 655 

determined by ANOVA. 656 

F. ECAR of control and CCT6A-overexpressing MRC5 cells. 657 

G-H. Lactate production in the supernatants of MRC5 cells and in the lungs of bleomycin mice. 658 

I. Pyruvate production in MRC5 cells. 659 

J. Expression of LDHA mRNA in MRC5 cells overexpressing CCT6A. 660 

K. Representative immunoblots showing LDHA expression in MRC5 cells overexpressing 661 

CCT6A. 662 

L. Western blots of LDHA expression normalized to β-actin. * P < 0.05, as determined by 663 

ANOVA. 664 

Fig. 5 Machine-learning-based selection of biomarker combinations for classification of IPF. 665 

A. Receiver operating characteristic (ROC) curve for the classification model. Calculation of 666 

AUC values in the patient cohort by 5-fold cross-validation. Confusion matrix of the four-667 

protein combination in the patient cohort. 668 

B. ROC curve for the test model Calculation of AUC values in the public cohort by 5-fold 669 

cross-validation. Confusion matrix of the four-protein combination in the public cohort. 670 
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C. Associations between the protein combinations and clinical outcomes in 30 IPF patients of 671 

the classification model. 672 

D. Heatmap of the combination biomarkers in the public cohort (PRIDE project PXD010965). 673 

E. ELISA determination of TTR expression in an independent cohort. (P-values calculated by 674 

t-tests). 675 

F. Correlation between TTR expression and patient age in the study cohort. 676 

 677 

 678 

Supplemental figures legends 679 

Figure S1 Schematic of the proteomic analyses of serum samples from 30 IPF patients and 30 680 

healthy controls.  681 

Figure S2 Profiling of serum proteomics of IPF patients and healthy controls. 682 

A. Quality control of mass spectrometry using a tryptic digest of HEK293T cells. The  683 

bottom-left half of the panel shows the pairwise Spearman’s correlation coefficients  684 

of the samples, and the top-right half of the panel depicts the pairwise scatter plots  685 

from the same comparisons.  686 

B. Assessment of study quality by analysis of the protein markers FGA, FGB, and 687 

FGG.   688 

C. Heatmap of the altered proteins in healthy controls and IPF samples. 689 

D. Volcano plot of differentially expressed genes differing significantly in non-IPF and IPF 690 

samples. The log2 differential expression ratio and the -log10 (p-value) were plotted for each 691 

gene. Proteins with differential expression ratios >2 or <2 were defined as those significantly 692 

up- and downregulated, respectively. 693 
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 694 

Figure S3 Proteomic subtypes of IPF with their molecular characteristics.  695 

A. Consensus clustering plus identification of three serum proteomic subtypes of IPF  696 

samples. The panel shows a consensus matrix of 30 IPF samples from k=2 to k=6,  697 

with k=3 considered the ideal value based on visual inspection of the consensus  698 

matrix and the change in area under the CDF.  699 

B. Top 30 exclusively expressed proteins in S-I, S-II, and S-III patients.  700 

Figure S4 Correlation of FOT value for CCT6A(MS data) with ELISA value of CCT6A in the 701 

same sera of IPF patients; Pearson correlation, P = 0.0056. n = 17 human samples. 702 

Figure S5 Identification of combination of biomarkers by machine-learning.  703 

A. Workflow of the machine-learning. 704 

B. TTR, KNG1 and FCN3 expression in the public cohort (left) and the study cohort (right). 705 
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Table 1 Information of IPF cohort and healthy control cohort  

 

Characteristics Control IPF 

Number 30 30 

Age 61.07 ± 9.85 64.50 ± 10.58 

Gender   

Male 17 22 

Female 13 8 

Smoking 8 11 
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Highlights  

● A serum proteome profiling by DIA-MS identified 2833 gene products from IPF and 

normal subjects, three subgroups were distinguished in IPF patients in signal pathways 

and overall survival.  

● Aging-associated signatures in module MEturquoise were identified by WGCNA 

coincidently falling into S-III which provided clear and direct evidence that aging is a 

critical risk factor for IPF rather than to a single biomarker  

● LDHA and CCT6A expression, which were associated with glucose metabolic 

reprogramming, were correlated with high serum lactic acid content in the patients with 

IPF. 

● Cross-model analysis and machine learning showed that a combinatorial biomarker 

accurately distinguished IPF patients from healthy subjects and validated from another 

cohort and ELISA assay. 
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Brief  

 

Wang et el (2022) performed serum proteomics by DIA-MS and identified 2833 gene 

products from IPF and normal subjects, and distinguished in IPF patients into three 

subgroups in signal pathways and overall survival. Aging-associated signatures by 

WGCNA coincidently provided clear and direct evidence that aging is a critical risk 

factor for IPF rather than to a single biomarker. LDHA and CCT6A expression, which 

were associated with glucose metabolic reprogramming, were correlated with high 

serum lactic acid content in the patients with IPF. Cross-model analysis and machine 

learning showed that a combinatorial biomarker accurately distinguished IPF patients 

from healthy subjects and validated from another cohort and ELISA assay. 
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