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BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with a high burden
of both pulmonary and extrapulmonary comorbidities.

RESEARCH QUESTION: Do these comorbidities have causal relationships with IPF?

STUDY DESIGN AND METHODS: We searched PubMed to pinpoint possible IPF-related co-
morbid conditions. Bidirectional Mendelian randomization (MR) was performed using
summary statistics from the largest genome-wide association studies for these diseases to date
in a two-sample setting. Findings were verified using multiple MR approaches under different
model assumptions, replication datasets for IPF, and secondary phenotypes.

RESULTS: A total of 22 comorbidities with genetic data available were included. Bidirectional
MR analyses showed convincing evidence for two comorbidities and suggestive evidence for
four comorbidities. Gastroesophageal reflux disease, VTE, and hypothyroidism were asso-
ciated causally with an increased risk of IPF, whereas COPD was associated causally with a
decreased risk of IPF. For the reverse direction, IPF showed causal associations with a higher
risk of lung cancer, but a reduced risk of hypertension. Follow-up analyses of pulmonary
function parameters and BP measures supported the causal effect of COPD on IPF and the
causal effect of IPF on hypertension.

INTERPRETATION: The present study suggested the causal associations between IPF and
certain comorbidities from a genetic perspective. Further research is needed to understand
the mechanisms of these associations. CHEST 2023; -(-):---
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Take-home Points

Study Question: Do the observed associations be-
tween idiopathic pulmonary fibrosis (IPF) and
comorbidities represent causality?
Results: Gastroesophageal reflux disease, VTE, and
hypothyroidism were associated causally with an
increased risk of IPF, whereas COPD was associated
causally with a decreased risk of IPF. IPF showed
causal associations with a higher risk of lung cancer,
but a reduced risk of hypertension.
Interpretation: This Mendelian randomization
study supported the causal associations between IPF
and certain comorbidities from a genetic perspective.
A deeper understanding of the pathways underlying
these diverse associations would be worthwhile, with
implications in terms of optimal prevention and
treatment strategies for comorbidities.
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Idiopathic pulmonary fibrosis (IPF) is a progressive and
fibrotic lung disease of unknown cause that occurs
primarily in older adults.1 Although pharmacologic
therapies for IPF have evolved remarkably in recent
years, it remains a lethal condition with a median
survival of 3 to 5 years.2 In addition to the adverse
effects directly induced by pulmonary fibrosis itself,
patients with IPF frequently have a variety of comorbid
conditions that lead to substantial negative outcomes,
including increased mortality and poor quality of life.3-5

Comorbid illness can be pulmonary or extrapulmonary.
Common pulmonary comorbidities include pulmonary
hypertension, COPD, and lung cancer, whereas
nonrespiratory conditions involve coronary artery
disease, gastroesophageal reflux disease (GERD), and
depression.

Despite the clear observed association between IPF
and comorbidities, the nature and direction of any
causal relationships between IPF and these
comorbidities is yet to be established.4 It is not known
whether comorbidities cause IPF or IPF contributes to
comorbidities, or alternatively whether IPF and
comorbidities develop independently because of shared
or common causative factors such as aging, smoking,
2 Original Research
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and genetic susceptibilities. Well-designed randomized
controlled trials usually are the gold standard to
deduce causality, but their use frequently is limited in
the field of comorbidities because of practical and
ethical considerations.6 Therefore, a better approach is
needed to assess the causal relationships between IPF
and comorbidities, thereby understanding the disease
cause, providing better care, and ultimately improving
clinical outcomes among patients.

Mendelian randomization (MR) is an increasingly
used approach that enables reliable causal inferences
by exploiting genetic variants as instruments for the
exposure.7 MR by nature is not prone to
confounding because genetic variants are assorted
randomly at conception and thus are unrelated to
environmental factors that usually act as
confounders. Furthermore, this method can minimize
reverse causation because genetic variants are fixed at
birth and are unaffected by the onset and progression
of disease. Bidirectional MR is an extension of basic
MR in which the exposure-outcome association is
investigated from both directions, providing a higher
level of evidence for causality.8 Moreover, the
availability of summary statistics from large genome-
wide association studies (GWASs) offers a timely
opportunity to explore the causal associations
between IPF and various comorbidities in a cost-
effective manner.8

Previous MR studies have examined partial IPF-related
comorbidities. Zhang et al9 found that hypothyroidism
is a causal risk factor of IPF that in turn does not affect
hypothyroidism causally. Fadista et al10 showed that IPF
may have a causal role in increasing the risk of severe
COVID-19, albeit with high uncertainty. A preprint
suggested a causal effect of GERD on IPF, but no effect
in the opposite direction.11 However, most IPF-related
comorbidities have not yet been assessed using the MR
approach, especially in a unified bidirectional
framework. Herein, leveraging the largest available
GWAS data, we performed a systematic bidirectional
MR study to dissect the causal relationships between IPF
and a wide range of possible comorbidities proposed by
epidemiologic studies.
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Study Design and Methods
Study Design

An overview of the study design is illustrated in Figure 1. The present
study consisted of four parts. First, we identified possible IPF-related
comorbidities by a literature search in PubMed. Second, we
investigated the bidirectional causal relationships between IPF and
comorbidities for which data are available using the MR method.
Third, we evaluated the credibility of findings based on the strength
of associations, fitness of MR assumptions, and consistency of effect
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arch 2023 � 1:09 am � EO: CHEST-D-23-00094



Q5

6

24 unique comorbidities
indentified from PubMed

through review

22 remaining
comorbidities for MR

analyses
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Discovery: International IPF Genetics Consortium
Replication: Global Biobank Meta-analysis Initiative

• Causal effects of FVC, FEV1, and FEV1 to FVC ratio on IPF
• Causal effects of IPF on systolic BP, diastolic BP, and pulse pressure

• Causal effects of thyroid-stimulating hormone and free thyroxine on IPF

Selection of genetic instruments and data harmonization
Bidirectional MR using inverse-variance weighted method

and a set of sensitivity analyses

Associations reached a defined significant
threshold and can be replicated

MR analyses had strong genetic instruments and
showed little evidence of horizontal pleiotropy

Direction of MR estimates consistent across
studies and across analyses

Strength of associations

Fitness of MR
assumptions

Direction of effect

Convincing
evidence

Suggestives
evidence

Weak evidence

COVID-19 hospitalization and
severity included as

complementary COVID-19
phenotypes

• Hiatal hernia and restless legs
syndrome excluded because full GWAS

summary data not available
• Emphysema and pulmonary

hypertension excluded because of
insufficient GWAS cases (< 2,000)
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Figure 1 –
Q19

Flow diagram showing an overview of the study design. IPF ¼ idiopathic pulmonary fibrosis; IVW ¼ inverse-variance weighted;
MR ¼ Mendelian randomization. Q23
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directions. Finally, follow-up analyses using secondary phenotypes
were conducted to strengthen the evidence. Reporting and analytic
process followed the Strengthening the Reporting of Observational
Studies in Epidemiology Statement using MR guidelines.12 This
study relied only on de-identified summary statistics from published
GWASs; ethical approval and informed consent were obtained in all
original studies.

Selection of Comorbidities

We performed a literature search in the PubMed database to identify IPF-
related comorbidities onNovember 1, 2022. The specific search terms and
strategy are detailed in e-Table 1. Results were restricted to English
language articles. The initial electronic search was supplemented by a
manual review of the reference lists of all relevant articles. Studies
looking into IPF either as an exposure or as an outcome were included.
We identified 24 unique comorbidities in total. After searching the
GWAS summary statistics through the GWAS catalog13 and MRC-IEU
OpenGWAS project,14 four comorbidities were excluded because the
chestjournal.org
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full GWAS summary statistics were not available or GWAS summary
statistics included fewer than 2,000 cases. For COVID-19, we tested
three different phenotypes for comprehensive assessment, including
COVID-19 susceptibility, hospitalization, and severity. Eventually, 22
comorbidities were included for MR analyses (Table 1).

Data Sources for IPF

The GWAS summary statistics for IPF were derived from a meta-
analysis of five studies (United Kingdom, Chicago, Colorado, UUS Q,
and Genentech Study) by the International IPF Genetics Consortium
(4,125 patients and 20,464 control participants).15 For replication, we
extracted summary statistics for IPF from the Global Biobank Meta-
analysis Initiative (GBMI; 6,257 patients and 947,616 control
participants), which comprises nine biobanks (BioVU, Colorado
Center for Personalized Medicine, Estonian Biobank, FinnGen,
HUNT Study, Michigan Genomics Initiative, Mass General Brigham,
UCLA Precision Health Biobank, and UK Biobank).16 Note that
both the International IPF Genetics Consortium and GBMI included
3
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TABLE 1 ] Characteristics of the GWASs on Comorbidities Used for Analyses

Comorbidity Data SourceQ20

PubMed
Identification

No. of
Patients

No. of Control
Participants

Data as Exposure,
Outcome, or Botha

COPD Sakornsakolpat et al (2019) 30804561 35,735 222,076 Exposure

FinnGen-R5 6,915 186,723 Outcome

Lung cancer McKay et al (2017) ILCCO
and LC3

28604730 29,266 56,450 Exposure

Wang et al (2014) ILCCO 24880342 11,348 15,861 Outcome

OSA Strausz et al (2021) 33243845 16,761 201,194 Both

COVID-19 COVID-19 HGI-R7 32404885 122,616 2,475,240 Both

Hospitalized COVID-19 COVID-19 HGI-R7 32404885 32,519 2,062,805 Both

Very severe
respiratory-confirmed
COVID-19

COVID-19 HGI-R7 32404885 13,769 1,072,442 Both

Pulmonary embolism FinnGen-R5 4,185 214,228 Both

Hypertension FinnGen-R5 55,917 162,837 Both

Coronary artery disease Harst et al (2018)
CARDIoGRAMplusC4D

29212778 122,733 424,528 Both

Stroke Malik et al (2018)
MEGASTROKE Consortium

29531354 40,585 406,111 Both

Atrial fibrillation Nielsen et al (2018) 30061737 60,620 970,216 Both

Heart failure Shah et al (2020) HERMES
Consortium

31919418 47,309 930,014 Both

VTE Lindström et al (2019)
INVENT Consortium

31420334 30,234 172,122 Exposure

FinnGen-R5 9,176 209,616 Outcome

Type 2 diabetes Mahajan et al (2022)
DIAGRAM Consortium

35551307 80,154 853,816 Both

Hyperlipidemia FinnGen-R5 4,535 197,259 Both

Hypothyroidism FinnGen-R5 26,342 59,827 Both

Gastroesophageal reflux
disease

Ong et al (2022) 34187846 129,080 473,524 Both

Major depressive disorder Howard et al (2019) PGC 30718901 246,363 561,190 Exposure

Howard et al (2019) PGC 30718901 170,756 329,443 Outcome

Anxiety disorders Otowa et al (2016) PGC 26754954 7,016 14,745 Both

Osteoporosis FinnGen-R5 3,203 209,575 Both

Fractures Morris et al (2019) 30598549 53,184 373,611 Both

Muscle weakness Jones et al (2021) CHARGE
Consortium

33510174 48,596 207,927 Both

CARDIoGRAMplusC4D ¼ Coronary Artery Disease Genome Wide Replication and Meta-analysis plus the Coronary Artery Disease Genetics; CHARGE ¼
Cohorts for Heart and Aging Research in Genomic Epidemiology; DIAGRAM ¼ Diabetes Genetics Replication and Meta-analysis; GWAS ¼ genome-wide
association study; HERMES ¼ Heart Failure Molecular Epidemiology for Therapeutic Targets; HGI ¼ Host Genetics Initiative; INVENT ¼ International
Network Against Venous Thrombosis; LC3 ¼ Cancer Cohort Consortium; ILCCO ¼ International Lung Cancer Consortium; PGC ¼ Psychiatric Genomic
Consortium.
aWe extracted genetic instruments for comorbidities from the largest GWASs to examine the causal effect of comorbidities on idiopathic pulmonary
fibrosis. For comorbidities in which the largest full summary statistics were inaccessible, we used available full summary statistics for comorbidities with
relatively small sample size to assess the causal effect of idiopathic pulmonary fibrosis on comorbidities.
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the UK Biobank, which means that the GBMI may not be an entirely
independent dataset. Among all studies, participants were of European
ancestry. Patients with IPF were diagnosed clinically using American
Thoracic Society/European Respiratory Society guidelines in the
International IPF Genetics Consortium and were ascertained using
International Classification of Diseases codes in the GBMI.
4 Original Research
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Data Sources for Comorbidities

We retrieved the GWAS summary statistics for 22 comorbidities
generated by the largest studies to date with participants of
European ancestry while ensuring minimum sample overlap with
IPF studies (Table 1). For some of the comorbidities, GWAS
summary statistics were derived from the FinnGen, where the
[ -#- CHE ST - 2 0 2 3 ]
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Figure 2 – Diagram showing the Mendelian
randomization model and the three key
assumptions: genetic variants (1) are
strongly associated with the exposure (rele-
vance assumption), (2) are independent of
confounders (independence assumption),
and (3) affect the outcome through the
exposure of interest only (exclusion restric-
tion assumption, also known as the no
pleiotropy).
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Finnish population has a different population structure to the central
European population. The population differences may affect the
power of the MR analysis. We therefore performed an additional
analysis using GWAS summary statistics from the Neale laboratory
analysis of the UK Biobank to test the robustness of our results.

Instrument Selection and Data Harmonization

To select genetic instruments for IPF and each studied comorbidity,
genome-wide significant (P < 5 � 10�8) single-nucleotide
polymorphisms (SNPs) were clumped by linkage disequilibrium
(r2 < 0.001 within 10,000-kB clumping distance) using the EUR
reference panel of the 1000 Genome Project. Instrumental SNPs for
the exposure absent in the outcome datasets were proxied using
SNPs in high linkage disequilibrium (r2 > 0.8), where possible. All
SNPs were harmonized between the exposure and the outcome by
alleles to ensure the alignment of effect. Characteristics of SNPs used
as genetic instruments are given in e-Table 2.
chestjournal.org
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Statistical Analysis

For the primary analysis, we calculated the Wald ratio for each tested
SNP and combined them using the inverse-variance weighted (IVW)
method to obtain the overall estimates.17 The IVW method provides
the most precise and robust estimates when three pivotal
assumptions regarding instrumental variables are satisfied (Fig 2).18

How the three MR assumptions were tested is detailed in
e-Appendix 1.

All statistical analyses were performed using the TwoSampleMR,14

MVMR,19 and MRPRESSO20 packages in R version 3.6.3 software (R
Foundation for Statistical Computing). Statistical power for MR
analyses was estimated using the mRnd webtool.21 To address
multiple testing, a conservative Bonferroni-corrected threshold (P <

1.11 � 10–3, because 22 comorbidities were evaluated for
bidirectional analyses) was adopted. Follow-up analyses and
evaluation of MR evidence are detailed in e-Appendix 2, with
additional data information in e-Table 3.
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Results

Instrument Statistics and Statistical Power

For the bidirectional MR analysis of the relationships
between IPF and 22 comorbidities, the number of SNPs
used as genetic instruments ranged from 1 (anxiety
disorders) to 187 (type 2 diabetes), explaining 0.04% to
2.66% of the phenotypic variance. F statistics for all
diseases are > 30, suggesting the good strength of
genetic instruments (e-Table 4). Power calculation
results are presented in e-Table 5. Generally, 84% and
64% of the tested associations have sufficient statistical
power (> 80%) to detect a moderate effect (OR, $ 1.10
or # 0.91) and a weak effect (OR, $ 1.05 or # 0.95),
respectively.

Comorbidities Showing Convincing Evidence

Among the 22 tested comorbidities, COPD and
GERD were the only two that showed reliable
evidence for their associations with IPF (Fig 3).
Genetic liability to COPD was associated with a
decreased risk of IPF (International IPF Genetics
Consortium: P ¼ 2.45 � 10–4, IVW method; GBMI:
P ¼ 0.048, IVW method), whereas genetic liability to
GERD was associated with a higher risk of IPF
(International IPF Genetics Consortium: P ¼ 8.12 �
10–3, IVW method; GBMI: P ¼ 9.80 � 10–4, IVW
method). The direction is consistent across sensitivity
analyses, including pleiotropy-robust methods,
multivariate MR with adjustment for smoking
initiation, Steiger filtering controlling for possible
reverse causation, and the analysis using the UK
Biobank data (e-Tables 6-9).

Comorbidities Showing Suggestive Evidence

Evidence suggestive of supporting that genetic liability
to VTE (International IPF Genetics Consortium: P ¼
.033, MR pleiotropy residual sum and outlier [PRESSO]
method; GBMI: P ¼ .020, IVW method) and
hypothyroidism (International IPF Genetics
Consortium: P ¼ .040, MR PRESSO method; GBMI:
P ¼ .002, IVW method) could lead to IPF was found
(Fig 3). In the reverse direction, genetic liability to IPF
presented a suggestive detrimental effect on lung cancer
(International IPF Genetics Consortium: P ¼ .034,
weighted median; GBMI: P ¼ 1.84 � 10–7, IVW
method) and a suggestive protect effect on
hypertension (International IPF Genetics Consortium:
P ¼ .046, IVW method; GBMI: P ¼ .007, IVW method)
(Fig 4). The less significant associations observed in the
International IPF Genetics Consortium than GBMI
may be the results of smaller sample size. Sensitivity
analyses did not change the pattern of the primary
findings (e-Tables 6-9).
5
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Figure 3 – A, B, MR estimates of the associations between genetic liability to 22 comorbidities and idiopathic pulmonary fibrosis (IPF) using the
summary statistics for IPF from the International IPF Genetics Consortium (A) and the Global Biobank Meta-analysis Initiative (GBMI) (B). Red dots
denote the presence of outliers, horizontal pleiotropy, or heterogeneity; red boxes indicate positive associations; blue boxes indicate negative associations;
and slashes mean that MR estimates of specific sensitivity analyses cannot be computed because of the insufficient number of single-nucleotide
polymorphisms. aP values of MR estimates passed the Bonferroni-corrected threshold (P < 1.1 � 10–3). bP values of MR estimates were between the
Bonferroni-corrected threshold and 0.05. IVW ¼ inverse-variance weighted; MR ¼Mendelian randomization; PRESSO ¼ pleiotropy residual sum and
outlier.

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
Comorbidities Showing Weak Evidence

The remaining comorbidities showed weak evidence for
associations with IPF in both directions because of
insufficient strength of associations, presence of
horizontal pleiotropy, or inconsistency in direction of
effect across analyses. We noted apparent horizontal
pleiotropy in the associations of genetic liability to IPF
with COVID-19 hospitalization and severe. The leave-
one-out analysis and MR-PRESSO outlier test detected
genetic variants at the MUC5B locus as extreme outliers,
where the risk allele has a different protective effect
compared with all other IPF-related variants (e-Figs 1, 2).
6 Original Research
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The MR-PRESSO method correcting for these outliers
yielded a possible effect of genetic liability to IPF on
increasing the risk of both COVID-19 hospitalization
(GBMI: P ¼ .009, MR-PRESSO method) and severe
COVID-19 (International IPF Genetics Consortium: P ¼
0.001, MR-PRESSO method).

Follow-up Analyses of Principal Findings

As shown in Figure 5, genetically predicted lower FEV1

and FEV1 to FVC ratio, but not FVC, were associated
with a reduced risk of IPF, providing additional evidence
to support the protective role of COPD in the cause of
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Figure 4 – A, B, MR estimates of the associations between genetic liability to idiopathic pulmonary fibrosis (IPF) and 22 comorbidities using the
summary statistics for IPF from the International IPF Genetics Consortium (A) and the Global Biobank Meta-analysis Initiative (B). Red dots denote
the presence of outliers, horizontal pleiotropy, or heterogeneity; red boxes indicate positive associations; and blue boxes negative associations. aP values
of MR estimates passed the Bonferroni-corrected threshold (P< 1.1� 10–3). bP values of MR estimates were between the Bonferroni-corrected threshold
and 0.05. IVW ¼ inverse variance weighted; MR ¼ Mendelian randomization; PRESSO ¼ pleiotropy residual sum and outlier.
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IPF. Consistent with the protective effect on
hypertension, our follow-up analyses showed negative
associations of genetic liability to IPF with systolic BP,
diastolic BP, and pulse pressure after controlling for
potential outliers. Although a suggestive association
between hypothyroidism and IPF was observed in the
primary analysis, we detected limited evidence to
support the effects of thyroid-stimulating hormone and
free thyroxine (e-Table 10).
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Discussion
In this MR study, we comprehensively evaluated the
bidirectional causal associations between IPF and 22
comorbidities. Using multiple MR methods and large-
chestjournal.org
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scale genetic data from different sources, we found
convincing evidence that COPD was associated causally
with a lower risk of IPF, whereas GERD was associated
causally with a higher risk of IPF. In addition, evidence
was suggestive of favoring the causal roles of VTE and
hypothyroidism in increasing IPF risk as well as the
causal roles of IPF in increasing lung cancer risk, but
decreasing hypertension risk. The remaining 16
considered comorbidities presented weak evidence to
support a causal association with IPF in both directions.
A summary of the main MR findings is presented in
Figure 6.

GERD has been presumed to be an external factor
predisposing patients to IPF because of its resultant
7

2023 � 1:09 am � EO: CHEST-D-23-00094

http://chestjournal.org


p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 5 – A-D, Graphs showing re-
sults of follow-up analyses. A, B, MR
estimates (expressed as OR) of the
associations of genetically predicted
lower FVC, FEV1, and FEV1 to FVC
ratio with idiopathic pulmonary
fibrosis (IPF) using the summary sta-
tistics for IPF from the International
IPF Genetics Consortium (A) and the
Global Biobank Meta-analysis Initia-
tive (GBMI) (B). C, D, MR estimates
(expressed as b) of the associations of
genetic liability to IPF with systolic
BP, diastolic BP, and pulse pressure
using the summary statistics for IPF
from the International IPF Genetics
Consortium (C) and the GBMI (D).
IVW ¼ inverse-variance weighted;
MR ¼ Mendelian randomization;
PRESSO ¼ pleiotropy residual sum
and outlier.
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microaspiration.3 However, whether GERD and IPF are
causally related remains controversial. A systematic
review confirmed a higher prevalence of GERD in
patients with IPF compared with the general population,
but concluded that a causal relationship cannot be
demonstrated after evaluating evidence from 14 studies.22

Similarly, a subsequent meta-analysis of 18 case-control
studies indicated that the observed association between
GERD and IPF is likely to be confounded by smoking.23

The debate extended further to the role of antireflux and
antacid therapy. Some studies showed that antacid
treatment was associated with a slower decline in lung
function and a longer survival time in IPF,24,25 whereas
two more recent meta-analyses suggested inconclusive
evidence for the beneficial effects of pharmacologic
GERD treatment on IPF.26,27 Corroborating a preprint,11

our MR study supported a causal effect of GERD on
8 Original Research
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increasing IPF risk, which was unchanged in the
multivariable MR analysis conditioning for smoking. This
finding may have important clinical implications for
renewing the interest in GERD as a potential therapeutic
target for IPF.

Intriguingly, our MR study found evidence that COPD
seems to confer protection against IPF, which
contradicts the observational findings for the coexistence
of COPD or emphysema and IPF. Follow-up analyses of
lung function suggested that a decreased FEV1 to FVC
ratio resulting from a decrease in the magnitude of FEV1

as compared with FVC accounted for the protective
effect of COPD. The negative association between IPF
and COPD or lung function can be explained by their
distinct genetic architecture. A previous GWAS
identified signals near DSP, FAM13A, ZKSCAN1, and
[ -#- CHE ST - 2 0 2 3 ]
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Figure 6 – Causal atlas of comorbidities in IPF. Left-hand side refers to IPF-related comorbidities identified from observational studies. Right-hand side
refers to the causal associations between IPF and six comorbidities shown in the present Mendelian randomization study. IPF ¼ idiopathic pulmonary
fibrosis.
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MAPT for both IPF and COPD, but the alleles showed
apparent opposite effects (ie, the risk alleles of COPD
being associated with a decreased risk of IPF).28

Moreover, only about 3% of the identified lung function
loci were reported to be associated with IPF
susceptibility, pointing to more IPF-specific pathways
outside of general lung health.28 However, diagnoses of
IPF (a restrictive lung disease) and COPD (an
obstructive lung disease) are mutually exclusive. In
practice, a substantial number of patients have
overlapping emphysema and fibrosis, but would not
meet UIP or IPF criteria. It is possible that the protective
effect of COPD on IPF could reflect protection from an
IPF disease label, rather than actual protection from
lung fibrosis developing.

We also detected a protective effect of IPF on
hypertension and BP phenotypes. A similar trend was
observed in most other studied cardiovascular diseases.
These results were opposed to those from observational
studies,29,30 but implied a potentially different genetic
cause between IPF and cardiovascular diseases that
needs further investigation. In contrast, VTE exhibited a
positive causal association with IPF in this study.
Multiple observational studies have implicated the
coexistence of VTE and IPF, but the issue of which
disorder comes first remains inconclusive.31-33 Our
bidirectional MR analysis suggested that VTE is more
likely to be a cause, rather than a consequence, of IPF
chestjournal.org
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progression. The exact mechanisms by which VTE
contributes to IPF are unknown, but it is plausible that
thrombin, a core enzyme involved in blood coagulation,
plays a role in the cause of IPF.34

IPF has been established as a strong risk factor for lung
cancer. Previous studies have reported that patients with
IPF have a sevenfold higher risk of lung cancer
compared with the general population, and the annual
risk of lung cancer seems to increase over time after IPF
diagnosis.35,36 Our MR study strengthened the evidence
for a causal effect of IPF on lung cancer. Common
pathogenic mechanisms include accumulation of
carcinogens resulting from lymphatic obstruction,
fibrosis-related cytokines and growth factors, and shared
genetic and epigenetic alterations.37,38

Hypothyroidism is a recently proposed comorbidity in
IPF. A case-control study and an MR study consistently
revealed that hypothyroidism was associated with a
higher risk of IPF, even after controlling for other
comorbidities.9,39 In this MR study, we validated the
findings of hypothyroidism using two IPF datasets.
However, follow-up analyses provided little evidence to
support the causal effects of thyroid-stimulating
hormone and free thyroxine. This result is in line with
an early case-control study showing that
hypothyroidism, but not thyroid-stimulating hormone
itself, predict mortality in IPF.39 We speculated that
9
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thyroid function-independent pathways (eg, immune
dysregulation) could play a role in the association
between hypothyroidism and IPF. In a gene expression
analysis, polymorphisms in CTLA-4, ICOS, and CD28
(associated with autoimmune thyroid disease and
thyroid autoantibody production) predicted poor
outcomes in patients with IPF.40

Pulmonary fibrosis has been linked to COVID-19
because of their shared risk factors such as older age, male
sex, and comorbidities.41,42 A MR study demonstrated
that IPF has no causal effect on COVID-19 severity, but
this association was statistically significant when
removing a genetic variant at MUC5B,10 which agrees
with our MR results. MUC5B is the strongest genetic
determinant of IPF.28 However, its risk allele seems to
protect against COVID-19 severity, which may be
explained by the protective effect of mucin overproduction
on the airways or selection bias.43,44 Overall, a causal
relationship between IPF and COVID-19 severity cannot
be determined in our MR study. The remaining
comorbidities also showed no reliable evidence to support
their causal associations with IPF.

The most notable strength of this study is the ability of
MR design to improve the causal inference, especially in
the context of studying rare diseases (eg, IPF) where
prospective cohort studies are always difficult to perform
because of the inability to collect large samples. Another
strength is the use of two large datasets for IPF, which
greatly enhanced the reliability of the causal atlas on
comorbidities in IPF.

Our study also has several limitations. First, estimates
from MR studies may not be compatible with those from
observational or interventional studies, which is even
greater when testing binary exposures (eg, IPF).45

Nevertheless, MR remains a robust method to test the
causal null hypothesis. Therefore, the main purpose of
this study was to investigate whether a causal
relationship exists, rather than to calculate causal
estimates. Second, although the largest summary
statistics were collected, only a very limited number of
SNPs are available as genetic instruments for some
10 Original Research
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diseases (eg, anxiety disorders), which results in low
statistical power. Further MR studies are warranted to
validate these associations when more robust genetic
instruments are available. Third, horizontal pleiotropy is
a major concern for the reliability of MR results.
Nonetheless, the likelihood of this bias is reduced
because consistent estimates were observed across
multiple MR methods, which have different
assumptions. Furthermore, the MR-Egger regression test
showed no clear directional pleiotropy for most tested
associations. Fourth, the data for certain comorbidities
were obtained from the FinnGen and UK Biobank,
which are also included in the GBMI or International
IPF Genetics Consortium control data, leading to
potential bias because of sample overlap. Nevertheless,
we believe this has little impact on the interpretation of
our results because two-sample MR methods, except for
MR-Egger, can be used safely when overlapping samples
are from large biobanks (eg, FinnGen and UK Biobank
in our study),46 and the robust strength of our
instruments (ie, F statistics much larger than 10) likely
minimized bias from sample overlap.47 Finally, because
the study participants from GWASs were predominately
of European ancestry, our results should not be
generalized directly to other ethnicities.

Interpretation
The current bidirectional MR analysis supports the
causal associations between IPF and certain
comorbidities from a genetic perspective. A deeper
understanding of the pathways underlying these diverse
associations would be worthwhile, with implications in
terms of optimal prevention and treatment strategies for
comorbidities.
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