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ABSTRACT
Background  Idiopathic pulmonary fibrosis (IPF) is a 
debilitating, progressive disease with a median survival 
time of 3–5 years. Diagnosis remains challenging and 
disease progression varies greatly, suggesting the 
possibility of distinct subphenotypes.
Methods and results  We analysed publicly available 
peripheral blood mononuclear cell expression datasets 
for 219 IPF, 411 asthma, 362 tuberculosis, 151 healthy, 
92 HIV and 83 other disease samples, totalling 1318 
patients. We integrated the datasets and split them into 
train (n=871) and test (n=477) cohorts to investigate 
the utility of a machine learning model (support vector 
machine) for predicting IPF. A panel of 44 genes 
predicted IPF in a background of healthy, tuberculosis, 
HIV and asthma with an area under the curve of 0.9464, 
corresponding to a sensitivity of 0.865 and a specificity 
of 0.89. We then applied topological data analysis to 
investigate the possibility of subphenotypes within IPF. 
We identified five molecular subphenotypes of IPF, one 
of which corresponded to a phenotype enriched for 
death/transplant. The subphenotypes were molecularly 
characterised using bioinformatic and pathway analysis 
tools identifying distinct subphenotype features including 
one which suggests an extrapulmonary or systemic 
fibrotic disease.
Conclusions  Integration of multiple datasets, from 
the same tissue, enabled the development of a model 
to accurately predict IPF using a panel of 44 genes. 
Furthermore, topological data analysis identified distinct 
subphenotypes of patients with IPF which were defined 
by differences in molecular pathobiology and clinical 
characteristics.

INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is a chronic and 
progressive disease of unknown cause resulting in 
significant fibrosis of the lungs, leading to a wors-
ening of dyspnoea, lung function, and ultimately 
death.1 The incidence of IPF has increased over 
time with cases currently ranging between 2.8 
and 18 cases per 100 000 in Europe and North 
America.2 3 The median age of IPF diagnosis is 65, 
with a median survival time from diagnosis of 3–5 
years.4

IPF lacks an in vitro diagnostic test and in 
suspected IPF cases, diagnosis is reliant on high-
resolution CT imaging and clinical expertise 
to identify a usual interstitial pneumonia (UIP) 
pattern, characterised by bilateral reticulation and 
honeycombing, typically in the lower lobes. If a 
UIP pattern is established, a detailed history is 

taken to identify any known causes (eg, mould in 
chronic hypersensitivity pneumonitis or asbestosis 
in pneumoconiosis),5 but if no cause can be identi-
fied, an IPF diagnosis can be made. The differential 
diagnosis between other UIP diseases and IPF is a 
crucial one as this may influence treatment options 
and decisions.6 Additionally, with the advent of 
new drugs (eg, pirfenidone (Esbriet) and nintedanib 
(Ofev)), there is a critical need for biomarkers for 
early diagnosis and for identifying patient groups 
where treatments will be most effective.

The conceptual belief of IPF as a chronic immune 
disease from the pre 2000’s has shifted to one 
which involves abnormal chronic wound healing 
in response to consistent micro-epithelial injury.6 
Nonetheless, clinical progression of IPF is known 
to be heterogenous with some undergoing rapid 
progression, leading to a poor prognosis and early 
mortality, to some exhibiting very few exacerba-
tions and a better prognosis.7 8 The reason for the 
difference in progression is likely multifaceted but 
may be attributed to different disease subpheno-
types, which although all present as fibrosis of the 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Diagnosis of idiopathic pulmonary fibrosis (IPF) 
is challenging as there is currently no in vitro 
diagnostic test available. The clinical course of 
IPF is also highly heterogenous, suggesting the 
possibility of distinct subphenotypes.

WHAT THIS STUDY ADDS
	⇒ This study combines multiple publicly available 
peripheral blood mononuclear cell datasets of 
IPF and other diseases to create a prediction 
model which could accurately predict IPF in a 
diseased background to a high degree using 
a panel of 44 genes. Furthermore, topological 
data analysis revealed five distinct molecular 
phenotypes of IPF, which we characterise here 
using bioinformatic analysis.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The prediction model outlined here could 
be investigated further to help develop an 
in vitro diagnostic test for IPF. Additionally, 
the newly identified subphenotypes with 
the interpretation given here can help future 
research understand the heterogenous disease 
progression of IPF, ultimately leading to new, 
more targeted therapies.

    1Shapanis A, et al. Thorax 2023;0:1–8. doi:10.1136/thorax-2022-219731
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Interstitial lung disease

lung, have been hypothesised to consist of different molecular 
phenotypes resulting in a heterogenous progression.

Topological data analysis (TDA) has been successfully used to 
discover information in large, sparse and complex biomedical 
datasets, including disease subphenotyping studies.9–14 Arising 
from topology in applied mathematics, TDA provides a frame-
work for analysing large volumes of high-dimensional data. 
In this study, we have used TDA to investigate for evidence of 
distinct molecular phenotypes of IPF using publicly available 
gene expression data of peripheral blood mononuclear cells 
(PBMCs). Using datasets from IPF and other heterogenous 
diseases, our study demonstrates that the transcriptomic profile 
of IPF is distinct from other diseases and using TDA identifies 
evidence for subphenotypes of IPF suggestive of differing under-
lying molecular pathophysiologies.

MATERIALS AND METHODS
Data collection
NCBI GEO study datasets corresponding to IPF PBMC expres-
sion data were collected (GSE38958,15 GSE2804216 and 
GSE13260717). Two other datasets were further collected for 
their utility as disease comparators relating to inflammation 
(GSE6968318: asthma) and infection (GSE3725019: HIV/ tuber-
culosis (TB)) in addition to the healthy patients included as part 
of these datasets. Online supplemental table 1 outlines the clin-
ical characteristics of the IPF datasets.

Normalisation and batch correction
Each dataset was log2 transformed (if not already done so) and 
digital precision normalised as described by Heider and Alt.20 
Genes with multiple probes in each dataset were averaged using 
the mean and all dataset expression matrices were combined 
into one large matrix. Genes which were present in <25% of 
the samples and samples containing <25% data were removed 
before finally removing all genes which had missing data to 
produce a full, complete expression matrix with no missing 
values. Data were then batch corrected between datasets using 
the ComBat function from the sva R package (V.3.44.0).

Topological data analysis
TDA was performed on IPF and healthy expression data (across 
all datasets) using Ayasdi software (Ayasdi, Menlo Park, Cali-
fornia, USA). A variance normalised Euclidean metric with L-In-
finity centrality and Gaussian density lenses with resolution of 
28 bins and gain of ×4, equalised was employed. Clusters across 
the TDA network were manually defined by selecting nodes 
which grouped together by edges per node (number of intercon-
nected nodes).

Differential expression, lung decline, pathway and CIBERSORT 
analysis
The R package, Limma (V.3.52.2), was used to identify differen-
tially expressed genes (DEGs) between each IPF subphenotype 
and to all healthy patients. DEGs along with their Benjamini 
Hochberg adjusted p values and fold changes were analysed 
using ingenuity pathway analysis (IPA). Results were exported 
and combined in R. Lung decline was analysed using longi-
tudinal data available in GSE132607 and plotted using Prism 
GraphPad. Forced vital capacity (FVC) and diffusing capacity for 
carbon monoxide (DLCO) values are given as predicted percent-
ages. Pairwise comparisons between timepoints were performed 
with Tukey’s correction. Longitudinal data were analysed by 
fitting a mixed model as implemented in GraphPad Prism. The 

mixed model uses a compound symmetry covariance matrix and 
is fit using restricted maximum likelihood. The p value for the 
null hypothesis was reported. Gene expression data for each 
sample was uploaded to CIBERSORT and analysed against the 
published LM22 immune signature allowing for 1000 permu-
tations. Results were exported and grouped into the subpheno-
types in R for plotting.

Machine learning
Data were partitioned into training (67%) and test (33%) 
cohorts, maintaining the ratio of test:control (IPF:other) samples 
in each cohort. Online supplemental table 2 outlines the clinical 
characteristics of the train/test split. R packages, caret (V.6.0-92), 
pROC (V.1.18.0) and doparallel (V.1.0.17), Boruta (V 7.0.0), 
were utilised for machine learning. Boruta search and recursive 
feature elimination (RFE) was used to identify the 44 predictive 
genes in the training cohort. Boruta search was performed for 
1000 iterations and genes scored for their importance allowing 
tentative genes to be carried forward. RFE was performed with 
5× repeated, 10-fold cross-validation using random forest, for 
subsets of 10–50 genes. The subset of genes which provided 
the best area under the curve (AUC) in the training data were 
carried forward. The Boruta and RFE predictive genes were 
then combined and formed the 44 predictive gene panel which 
was used to train the support vector machine (SVM; with radial 
kernel) employing fivefold cross-validation repeated three times 
before testing it on the test cohort to see how well it predicts IPF/
no-IPF. Training was carried out measuring receiver operating 
characteristic curve AUC.

RESULTS
We analysed publicly available PBMC expression datasets for 
219 IPF, 411 asthma, 362 TB, 151 healthy, 92 HIV and 83 other 
disease samples, totalling 1318 patients. First, we investigated 
if PBMC derived gene expression data alone may be sufficient 
to accurately diagnose IPF. All datasets were combined and 
split randomly into training (67%) and test (33%) cohorts. RFE 
and Boruta search was performed on the training data to iden-
tify a panel of 44 predictive genes which were used to train a 
SVM with a radial basis function kernel. The resulting predic-
tive model had an AUC of 0.964 (95% CI: 0.9452 to 0.9834) 
with a specificity and sensitivity of 0.89 and 0.865, respectively 
(figure  1A). Furthermore, when filtering the test set for only 

Figure 1  Feature selection identified a panel of 44 genes capable 
of accurately predicting IPF. Data were split into training (67%) and 
test (33%) and automated feature selection used on the test set to 
identify predictive genes. Using these genes, a support vector machine 
with radial kernel was trained using the training set and tested on (A) 
complete test dataset; (B) only IPF and healthy patients in the test set 
and (C) only IPF and other diseases in the test set. Large black dots 
represent the optimal cut-off as per the maximum AUC (first value) 
followed by specificity and sensitivity in parentheses. AUC, area under 
the curve; IPF, idiopathic pulmonary fibrosis.
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IPF and healthy samples, an AUC of 0.935 (95% CI: 0.8937 
to 0.976) with a specificity of 0.745 and sensitivity 0.892 was 
obtained (figure 1B). Moreover, when filtering the test set for 
only IPF and other diseases, an AUC of 0.972 (95% CI: 0.9549 
to 0.9894) with specificity 0.939 and sensitivity of 0.865 was 
achieved (figure 1C). Thus, these findings suggest that the PBMC 
profile of patients with IPF is distinct. To discern uncertainty 
around the AUC, we also performed 10-fold cross-validation 
which produced an AUC of 0.954 (95% CI: 0.9280 to 0.9802) 
for all data, or an AUC of 0.930 (95% CI: 0.8885 to 0.9711) on 
only IPF and healthy or an AUC of 0.961 (95% CI: 0.9363 to 
0.9863) on only IPF and other diseases.

Topological data analysis
Having identified evidence of a distinct PBMC transcriptomic 
profile in patients with IPF, we then performed TDA across all 
gene expression data from IPF and healthy samples to investigate 
for the potential of subphenotypes of IPF. TDA identified five 
IPF subphenotypes with an even distribution of samples from 
each IPF dataset across the network, while in the ‘healthy’ cluster 
there was an enrichment of samples from dataset GSE69683, 
which was to be expected since only healthy patients were used 
from this dataset (figure  2 and online supplemental figure 1). 

Clinical features within the metadata included smoking history, 
DLCO, FVC and transplant-free survival can be found in online 
supplemental table 1. Mapping of these features onto the TDA 
network identified a cluster (subphenotype 5) enriched for 
death/transplant, with a significantly reduced time to event when 
compared with the other subphenotypes (online supplemental 
figure 2).

GAP score and lung function
The Gender, Age and Physiology (GAP) index21 for each patient 
was calculated using available data and split into their respective 
subphenotypes. No single subphenotype was heavily enriched 
for a particular GAP score, suggesting that the identified subphe-
notypes do not simply represent physiological or sex differences, 
although the IPF subphenotype enriched for death or transplant 
events (subphenotype 5), had a higher proportion of GAP stage 
3 individuals while subphenotype 4 had the highest proportion 
of GAP stage 1 individuals (figure 3A).

No significant difference was observed between baseline 
FVC and DLCO data for each subphenotype (Brown-Forsythe 
and Welch analysis of variance tests, p values=FVC: 0.7895, 
DLCO: 0.1349), while at 12 months there was a significant 
reduction in DLCO for subphenotype 3 (figure 3B). To deter-
mine longitudinal lung function, data from GSE132607 was 
plotted (figure 3C), excluding subphenotype 2 where there were 
insufficient numbers. Subphenotype 1 had a significant decline 
in both DLCO and FVC between baseline and 12 months, while 
subphenotype 5 had a decline in DLCO between baseline and 
12 months.

Pathway and upstream regulator analysis
Significantly DEGs between each IPF subphenotype and all 
other patients with IPF, and between each IPF subphenotype and 
all other healthy patients were identified using the linear models 
for microarray and RNA-seq data (Limma) R package. Analysis 
of these DEGs using ingenuity pathway highlighted several key 
pathways and upstream regulators (figure 4). Comparative anal-
ysis of DEGs for each IPF subphenotype versus all healthy indi-
viduals highlighted several upstream transcriptional regulators 
that were common to all IPF subphenotypes (figure  4A). For 
example, each subphenotype showed a predicted activation of 
Hepatic Nuclear Factor 4 Alpha (HNF4a), dexamethasone, lipo-
polysaccharide, TP53, Nuclear Protein 1, Transcriptional Regu-
lator (NUPR1), tretinoin or Spi-1 Proto-Oncogene (SPI1) and 
filgrastim, a drug used for the treatment of neutropenia. Predicted 
inhibition of cluster of differentiation 3 (CD3), MYC proto-
oncogene, bHLH transcription factor (MYC), T-Cell receptor 
(TCR) and transcription factor 3 (TCF3) were seen within all 
subphenotypes. In contrast many of the upstream regulators, 
including IL2, IL4, Kruppel Like Factor 3 (KLF3), IL15, Trans-
forming Growth Factor Beta 1 (TGFB1) and oestrogen receptor 
1 (ESR1) showed differences in activation states (z-scores) across 
the subphenotypes suggesting unique mechanisms underpining 
the molecular pathobiology of the different subphenotypes.

Investigating the signalling pathways associated with the 
DEGs also revealed several pathways consistently downregulated 
across all subphenotypes (figure 4A), including PI3K signalling 
in B cells, telomerase signalling, 3-phosphoinositide biosyn-
thesis and aldosterone signalling in epithelial cells. Many path-
ways were also differentially enriched between subphenotypes, 
including IL8, mTOR, TREM1, p53, HIF1a, B cell receptor 
and autophagy signalling. These differences in pathway activity 

Figure 2  TDA separates IPF from healthy individuals and highlights 
the presence of subphenotypes. IPF and healthy data from GSE132607, 
GSE28042, GSE38958 and healthy data from GSE69683 were subjected 
to TDA using Ayasdi software. A variance normalised Euclidean metric 
with L-infinity centrality and Gaussian distribution lenses, both with 
a resolution of 25 and a gain of 4 were used to generate the TDA 
structure. Dataset, smoker status, DLCO, FVC and transplant-free 
survival events were colour mapped onto the structure. red colouring 
denotes yes/high values; blue denotes no/low values. DLCO, diffusing 
capacity for carbon monoxide; FVC, forced vital capacity; IPF, idiopathic 
pulmonary fibrosis; TDA, topological data analysis.
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between subphenotypes further suggests unique pathophysiobi-
ology underpinning each of the subphenotypes (figure 4B).

We investigated expression of key genes identified in the 
publications associated with the integrated datasets used in this 
study22 23 (figure 5). Subphenotype 1 showed higher expression 
of Inducible T-cell costimulator (ICOS), Tyrosine-protein kinase 
(ITK), lymphocyte-specific protein tyrosine kinase (LCK), Lyso-
cardiolipin Acyltransferase 1 (LCLAT1), platelet-derived growth 
factor D (PDGFD) and β-galactosidase (GLB1), but lower 
expression of cyclin-dependent kinase inhibitor 1 (CDKN1A) 
and mucin 1 (MUC1). Subphenotypes 2, 3 and 4 showed similar 
high expression of LCLAT1, GLB1, and less ICOS, ITK, LCK,C-
DKN1A and MUC1, while subphenotype 5 had lower amounts 
of all except CDKN1A.

CIBERSORT analysis
We next investigated for evidence of differences in immune cell 
composition between the identified subphenotypes. CIBER-
SORT analysis of gene expression values versus the LM22 
CIBERSORT defined signature24 were used to predict the 
immune cell proportions for each patient and then grouped 

into their respective subphenotypes (figure 6 and online supple-
mental table 3). Each subphenotype exhibited a specific immune 
cell profile with subphenotype 5 (that with highest incidence 
of death/transplant) having the highest proportion of activated 
mast cells and lowest proportion of naive CD4 T cells and acti-
vated dendritic cells. Subphenotype 1, that with the worst lung 
decline over time, had the highest number of naive CD4 T cells. 
These data suggest that each subphenotype is represented by a 
distinct immune cell profile.

DISCUSSION
Here we integrated several PBMC transcriptomic datasets and 
identified evidence that patients with IPF have a distinct tran-
scriptomic signature, with predictive modelling identifying a 44 
gene signature capable of predicting IPF in a healthy and diseased 
population. Moreover, TDA revealed five novel subphenotypes 
of IPF. Importantly, this was all achieved within the same tissue 
type, PBMCs, where other studies that attempted this with less 
advanced clustering methods (hierarchical clustering, principle 
component analysis (PCA) and multidimensional scaling) and 
across inconsistent tissue subtypes. Each of these subphenotypes 

Figure 3  Each subphenotype is independent of GAP score and has its own lung function associated with it. (A) Using the available data, GAP scores 
were calculated for each subphenotype which emphasised that subphenotypes are novel and not dependant on GAP scores. (B) Baseline DLCO and 
FVC PP were plotted for each subphenotype at base line and 12 months. This showed no significant difference between any subphenotype except 
for subphenotype 3 which had a lower DLCO at 12 months. (C) Longitudinal data from GSE132607 was plotted for each subphenotype. Pairwise 
comparisons between each timepoint was performed with a Tukey’s test. A mixed model was performed on each subphenotype and p value reported 
for each graph. Subphenotype 2 did not have enough patients from the GSE132607 dataset to investigate. DLCO, diffusing capacity for carbon 
monoxide; FVC, forced vital capacity; GAP, Gender, Age and Physiology; PP, predicted percentage.
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were unique in their clinical and molecular characteristics, high-
lighting potential underlying mechanisms which could help 
future understanding and treatment of IPF.

Pathway and upstream regulator analysis highlighted key 
differences between the subphenotypes. HNF4A was strongly 
inhibited in subphenotype 1 and is an important transcription 
factor responsible for regulating several genes involved in liver 
development and may play a role in liver fibrosis. Induced 
expression of HNF4A in a Rat model of liver carcinogenesis has 
been reported to alleviate liver fibrosis25 26 through conversion of 
myofibroblasts into hepatocyte-like cells.27 Interestingly, HNF4A 
may also possess endocrine functions (or have endocrine effects) 
in systemic autoimmune rheumatic diseases28 and as a major 
regulator of acute exacerbation of patients with chronic obstruc-
tive pulmonary disease (COPD).29 Studies have suggested that 
32%–35% of patients with IPF also have liver fibrosis30 and that 
the overall survival was lower in those patients.31 It is possible 

that HNF4A also contributes to lung fibrosis through a similar 
mechanism to liver fibrosis, modulating the immune system and 
myofibroblast dedifferentiation through common pathways.32 
PDGFD has been proposed as an indicator of liver fibrosis 
progression33 and moreover when fibrosis was induced by bile 
duct ligation, PDGFD gene expression was shown to be signifi-
cantly increased.34 Interestingly, high systemic levels of PDGFD 
induced by hepatic adenovirus-based overexpression has been 
shown to be sufficient to induce interstitial kidney fibrosis and 
initiate fibroblast to myofibroblast differentiation,35 which has 
also been shown to promote pulmonary fibrosis.36 Here we iden-
tify that subphenotype 1 was also enriched for PDGFD expres-
sion, suggesting that this could represent a phenotype associated 
with multiorgan fibrosis.

Sex is a well-established risk factor of IPF with males having 
an increased likelihood of developing the disease.21 Male mice 
with bleomycin induced pulmonary fibrosis present with more 
fibrosis than females. Interestingly, castrated male mice exhib-
ited a response similar to female mice, while female mice given 
androgen exhibited a response similar to male mice, outlining 
the potential importance of sex hormones in exacerbating 
pulmonary fibrosis.37 Premenopausal women have also been 
shown to have a lower risk of severe liver fibrosis than men, 
however, after menopause this risk becomes similar to the risk 
in men.38 Our analysis predicted increased oestrogen receptor 1 
(ESR1) activation for subphenotypes 1 and 4 and a decrease in 
subphenotypes 2, 3 and 5 when compared with healthy individ-
uals. Subphenotype 5, the subphenotype which was enriched for 
people who either died or underwent transplant, had the lowest 
predicted activation of ESR1 across the subphenotypes, further 
suggesting a role for oestrogen and oestrogen-related signalling 
in IPF.

Given that IPF is a chronic and progressive disease, early detec-
tion and intervention is critical for prolonging life. Early inter-
vention with nintedanib and pirfenidone have shown to reduce 
the rate of lung function decline, highlighting the need for early 
detection.39–41 Currently, there is no approved blood based in 
vitro diagnostic and the gold standard remains multidisciplinary 
team discussions of high-resolution CT scans and in necessary 
cases, histological analysis of lung biopsies.42 Herazo-Maya et 
al2222 reported a panel of four genes for predicting IPF progres-
sion: CD28, ICOS, LCK and ITK where their higher expression 
was associated with a better transplant-free survival. This same 
dataset (GEO28042) also formed part of our integrated dataset, 
although CD28 was removed during the process of combining 
and batch correction. In line with Herazo-Maya, we observed 
lower expression of ICOS, LCK and ITK in subphenotype 5, 
the transplant and death subphenotype, but contrastingly found 
higher expression of these three genes in the subphenotype with 
the worst lung decline over time (subphenotype 1). Additionally, 
the study which generated dataset GSE38958 identified Lyso-
cardiolipin Acyltransferase (LCLAT1) as having a positive effect 
on survival.23 Our integrated analysis supports their findings 
with lower expression of LCLAT1 in subphenotype 5. However, 
similar to ICOS, LCK and ITK, we observed higher expression 
of LCLAT1 in subphenotype 1, that which has the worst lung 
decline over time. The reason behind these differences is unclear 
but may reflect our stratification of these individuals into subphe-
notypes, which was not the case for their studies. The high molec-
ular weight glycoprotein KL-6 (MUC1) has previously been 
proposed as a blood marker of IPF, where an increase in MUC1 
over time was associated with a lower survival.43 However, the 
study sample size was limited to 145 patients and patients were 
treated with prednisone which current international consensus 

Figure 4  Upstream regulator and pathway analysis reveals 
both commonalities and key differences between subphenotypes. 
Significantly differentially expressed genes for each subphenotype 
compared with(A), healthy patients or (B) all other patients with 
IPF. Significantly differentially expressed genes were analysed using 
ingenuity pathway analysis for upstream regulators (left heatmap 
of each panel) and pathway activity (right heatmap of each panel). 
Regulator and pathway analysis were combined into a heatmap and 
ordered by sum of log10 (p value) and filtered to top 20. IPF, idiopathic 
pulmonary fibrosis; SP, subphenotype.
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guidelines do not endorse as a treatment for IPF. In our anal-
ysis, subphenotypes 2–4 have the highest MUC1 expression and 
so seemingly contradict these findings, however, given the lack 
of longitudinal data we are unable to investigate the change of 
MUC1 over the disease course.

A recent study investigated the proteome profile of blood 
plasma in 300 patients with IPF versus 100 healthy patients 
using the aptamer-based platform, SOMAscan.44 The authors 
reported multiple prediction models for IPF diagnosis with 6 
of 8 giving an AUC of 1. Although this study is promising and 
highlights the possibility of blood-based diagnostics of IPF, it 
suffers from several limitations. With aptamer-based technolo-
gies being expensive, the study’s healthy cohort consisted of only 
100 individuals and moreover, specifically excluded any control 
patients with respiratory diseases, cancer, autoimmune diseases, 
smokers and secondhand smoke sufferers. Although helpful in 
identifying mechanisms underpinning IPF, such a homogenous 
sample of the healthy population in a prediction model limits 

its likely ability to be translational and applicable to the wider 
population. Our study countered this issue through integration 
of multiple patient datasets including those with IPF, asthma, TB, 
HIV and several other diseases. One of the datasets used in our 
study identified a 52-gene panel that was able to predict poor 
outcome in IPF, specifically in the form of those that underwent 
transplant or died.22 Given the absence of any in vitro diagnostic 
test for IPF, we decided to develop a general IPF/no-IPF predic-
tive model to help towards solving this problem. Given that the 
panel outlined by Herazo-Maya et al was based on the prediction 
of poor outcomes in IPF, it is not too surprising that there are 
no shared genes between their 52-gene and our 44-gene panel.

Kraven et al45 have recently taken a similar approach to our 
study, although there are several limitations that we believe are 
solved by our present study. Kraven et al combine several datasets 
to form a larger IPF dataset, but do so combining different tissue 
types. As the authors acknowledge, the integration of whole 
blood and PMBC which are significantly different may introduce 

Figure 5  Mapping expression of selected genes across the topological data analysis network highlights differences between subphenotypes.

Figure 6  CIBERSORT analysis reveals distinct immune signatures between subphenotypes. Gene expression data for each patient was analysed 
using CIBERSORT against the published LM22 immune signature, allowing 1000 permutations. Results were exported to R and plotted using ggplot2. 
Only signatures with significant difference are shown.
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a systematic bias in the results. By comparison, we purposefully 
used data from one tissue type to reduce this potential bias. 
In our study, we used the unsupervised approach TDA, which 
has allowed the separation of patient data into subphenotypes 
without any predefined assumptions on the number of groups/
clusters. This is in contrast to Karven et al who use a supervised 
clustering approach to predefine the number of clusters present 
and subsequently use PCA to assign each cluster. Clustering by 
PCA leads to a loss of data since only the principal components 
are used in the analysis, masking any non-linear relationships. 
We also biologically characterise these sub-phenotypes using a 
range of bioinformatic tools.

The findings of this study have to be seen in light of some 
potential limitations. Most notably not all clinical information 
was available for each of the datasets used, meaning that the 
time to event and treatment data were not available for each 
patient. Nonetheless, the original articles which produced the 
datasets do indicate that samples were collected treatment naive 
and so if present at all, will likely only be a few patients. We are 
also limited by the absence of a comparison to other intersti-
tial lung diseases (ILDs), but unfortunately, there are currently 
no publicly available PBMC ILD datasets that we are aware of 
for comparison. Another limitation is that the predictive model 
outlined here has not been validated in a prospective cohort. 
We did however take a more conservative approach using both 
cross-validation and training/test split which informs us that the 
model is not overfitted to the data used for training. The limita-
tions outlined here highlight the importance and need of a large 
prospective cohort of IPF and other ILDs.

In conclusion, we have integrated multiple datasets to develop 
a predictive model which can accurately predict IPF in a back-
ground of healthy patients, and patients with TB, HIV and 
asthma, using a panel of 44 genes, highlighting the potential for 
a non-invasive diagnostic tool for IPF. Furthermore, TDA iden-
tified distinct subphenotypes of patients with IPF which were 
defined by differences in molecular pathobiology and clinical 
characteristics.
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