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ABSTRACT
Purpose  Acute exacerbation of idiopathic pulmonary 
fibrosis (AE-IPF) is the primary cause of death in patients 
with IPF, characterised by diffuse, bilateral ground-glass 
opacification on high-resolution CT (HRCT). This study 
proposes a three-dimensional (3D)-based deep learning 
algorithm for classifying AE-IPF using HRCT images.
Materials and methods  A novel 3D-based deep learning 
algorithm, SlowFast, was developed by applying a 
database of 306 HRCT scans obtained from two centres. 
The scans were divided into four separate subsets (training 
set, n=105; internal validation set, n=26; temporal test 
set 1, n=79; and geographical test set 2, n=96). The final 
training data set consisted of 1050 samples with 33 600 
images for algorithm training. Algorithm performance was 
evaluated using accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value, receiver 
operating characteristic (ROC) curve and weighted κ 
coefficient.
Results  The accuracy of the algorithm in classifying 
AE-IPF on the test sets 1 and 2 was 93.9% and 86.5%, 
respectively. Interobserver agreements between the 
algorithm and the majority opinion of the radiologists were 
good (κw=0.90 for test set 1 and κw=0.73 for test set 
2, respectively). The ROC accuracy of the algorithm for 
classifying AE-IPF on the test sets 1 and 2 was 0.96 and 
0.92, respectively. The algorithm performance was superior 
to visual analysis in accurately diagnosing radiological 
findings. Furthermore, the algorithm’s categorisation was a 
significant predictor of IPF progression.
Conclusions  The deep learning algorithm provides high 
auxiliary diagnostic efficiency in patients with AE-IPF and 
may serve as a useful clinical aid for diagnosis.

INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is a 
chronic, progressive pulmonary disease of 
unknown aetiology.1 A subset of patients 
with IPF experience a significant minority 
develop episodes of acute clinical respiratory 
worsening, termed acute exacerbations of 
IPF (AE-IPF).2 AE-IPF is difficult predict or 
prevent and precedes approximately half of 
the IPF-related deaths, with a mean survival of 

3–4 months.3 4 The most common radiolog-
ical feature in patients with AE-IPF is the pres-
ence of new ground-glass opacities (GGO) 
superimposed on subpleural reticular and 
honeycomb-like densities.2 There have been 
several studies identified that high-resolution 
CT (HRCT) scan plays a central role in the 
adequate diagnosis and early intervention of 
AE-IPF.5–7 However, radiological evaluation of 
AE-IPF remains challenging and is susceptible 
to significant variability between observers, 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Acute exacerbation of idiopathic pulmonary fibrosis 
(AE-IPF) is a significant cause of death in patients 
with IPF, characterised by clinically significant re-
spiratory deterioration and diffuse bilateral ground-
glass opacification on high-resolution CT (HRCT) 
scans. However, radiological evaluation of AE-IPF 
remains challenging and is subject to substantial in-
terobserver variability. Currently, several deep learn-
ing models have been applied to diagnostic support 
of fibrotic interstitial lung disease, however, most re-
search has focused on deep learning models based 
on two-dimensional data, with limited research ex-
ploring deep learning for AE-IPF diagnosis.

WHAT THIS STUDY ADDS
	⇒ This study investigated that the innovative three-
dimensional video-sequence methodology called 
SlowFast, is proposed to classify acute exacerbation 
in patients with IPF on HRCT scans. The accuracy 
of the algorithm in predicting radiological diagnosis 
was superior to that of thoracic radiologists (area 
under the curve=0.96), with excellent interobserver 
agreement (κw=0.90).

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The study provides a valuable contribution to the 
field by demonstrating the potential of deep learning 
algorithms to provide low-cost, consistent patient 
stratification and assistance for radiological deci-
sions of AE-IPF.
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even among experienced radiologists.7 8 Therefore, 
developing better methods for HRCT scans detection 
and disease classification generated by deep learning 
algorithms, has the potential to improve the radiological 
diagnosis of AE-IPF.

Deep learning, a subset of artificial intelligence (AI) 
technology that efficiently identifies patterns in high 
dimensional data, has recently entered an accelerated 
phase in medical image interpretation.9–11 Currently, 
several two-dimensional (2D)-data-based deep learning 
models (Convolution neural networks, Recurrent neural 
networks, Deep belief networks, etc) have been success-
fully applied to diagnostic support of fibrotic interstitial 
lung disease (ILD), early detection of clinically signifi-
cant fibrotic lung disease and prediction of progressive 
fibrotic lung disease.9 12 13 However, despite the apparent 
benefits of these models for fibrotic lung disease, there 
are still some critical limitations, including algorithm 
performance, data heterogeneity and constraints, rela-
tive opacity of neural networks (black box phenomenon) 
and lack of histopathological reference standard.14 
More importantly, the 2D-based models randomly select 
four segmented axial HRCT image slices from a range 
of 250–450 axial image slices per patient for algorithm 
training, which inevitably leads to the loss of some HRCT 
image information.9 15 To address this research gap, this 
study proposes a three-dimensional (3D) video-sequence-
based methodology called SlowFast, which incorporates a 
novel algorithm for detecting HRCT scans. Generally, the 
SlowFast algorithm uses a slow, high-definition CNN (Fast 
pathway) to analyse the static content of a video, while 
in parallel, a fast, low-resolution CNN (Slow pathway) 
is used to analyse the dynamic content.16 17 HRCT scans 
consist of large amounts of ordered high-resolution 
images,18 making them highly suitable for deep learning 

models based on 3D data. However, most research so far 
has focused on deep learning models based on 2D data, 
with limited research exploring deep learning for AE-IPF 
diagnosis. This study, for the first time, investigated 
that the 3D video-sequence-based algorithm SlowFast is 
proposed to classify acute exacerbation in patients with 
IPF on HRCT scans.

MATERIALS AND METHODS
Patient and public involvement statement
The patients or the public were not involved in the 
design, or conduct, or reporting, or dissemination plans 
of our research.

Data split
For model pretraining, an internal data set A comprising 
131 patients with HRCT scans taken between December 
2015 and December 2018 was obtained from Nanjing 
Drum Tower Hospital, consisting of 62 cases of stable 
IPF, 40 cases of AE-IPF and 29 cases of healthy controls. 
For model validation, an external data set B comprising 
175 patients with HRCT taken between January 2019 and 
December 2022 was obtained from Nanjing Drum Tower 
Hospital and Nanjing Traditional Chinese Medicine 
Hospital, consisting of 84 cases of stable IPF, 57 cases of 
AE-IPF and 34 cases of healthy controls.

The inclusion criteria were: (1) the availability of HRCT 
with slices thickness of less than 1.5 mm, and each HRCT 
showing evidence of diagnoses.3 19 20 For AE-IPF, the diag-
nostic evidence was characterised by the presence of new 
bilateral GGO and/or consolidation, superimposed on 
a background pattern consistent with the usual intersti-
tial pneumonia pattern. (2) Other clinical data meet the 
diagnostic criteria.3 19 20 For stable-IPF, diagnostic criteria 
include stable clinical symptoms, HRCT imaging and 
pulmonary function tests for at least 1-month prior to 
inclusion. The exclusion criterion was the use of contrast 
enhancement.

The ground truth labels were proved by four thoracic 
radiologists/respirologists (with 5–20 years of expe-
rience in diagnosing ILD). The total data set size was 
3060 samples with 97 920 images (204–351 axial image 
slices per patient). The internal data set A was split into 
a training set (n=105) and a validation set (n=26). The 
external data set B was split into two sets: test set 1 (n=79) 
and test set 2 (n=96), which were used for temporal vali-
dation of the model (figure 1).

Image preprocessing and resampling
Data set for semantic segmentation: the semantic segmen-
tation data set consists of 512 HRCT slicers selected from 
the data set A with uniform sampling. The original images, 
initially sized at 512×512 pixels, were cropped to 320×320 
and labelled by the four radiologists/respirologists using 
the graphical image annotation tool LabelMe.21 The data 
set was split into training, validation and test set, with 

Figure 1  Data set flowchart of the study design. The 
flowchart diagram illustrates the division of the total cohort 
of HRCT scans into training, validation and test cohorts, 
followed by image segmentation and resampling. AE-IPF, 
acute exacerbation of idiopathic pulmonary fibrosis; IPF, 
idiopathic pulmonary fibrosis.



Huang X, et al. BMJ Open Respir Res 2024;11:e002226. doi:10.1136/bmjresp-2023-002226 3

Open access

proportions of 0.70:0.15:0.15, containing 358, 77 and 77 
images, respectively. The segmentation model DeepLab-
V3+was trained using this data set to remove redundant 
information from the original HRCT scans.

Data set for video classification: after being segmented 
by the segmentation model, the HRCT scans of 306 
patients were ready to generate the video classification 
data set. For each patient, 128 consecutive scans from the 
middle section were selected and divided into 32 equal 
parts. Then, 1 scan was randomly chosen from each part 
to form a learnable sample consisting of 32 slices. To 
train the video classification model SlowFast, a sample 
with 32 images is proper. Samples were randomly drawn 
10 times from each patient series yielding a total of 3060 
samples. Finally, the 3060 samples were split into the 

train, validation, test set 1 and test set 2 with 1050, 260, 
790 and 960 samples, respectively (figure 2).

Data augmentation: to increase the size and diver-
sity of the data set, data augmentation techniques were 
employed during the preprocessing stage, including Flip, 
Rotate and Dropout. Horizontal flipping was applied to 
each image with a 50% probability to generate additional 
images by creating mirror images of the originals. Addi-
tionally, each image was randomly rotated by a degree 
between −20° and +20° to simulate different viewing 
angles and orientations. Finally, the Dropout technique 
was used to randomly select and set 5% of pixels in each 
image to zero.

Algorithm development
Two neural networks were used in this work. The semantic 
segmentation network DeepLabV3+was used to separate 
the lung area from the original HRCT scan. The resulting 
segmented image was then used for the subsequent clas-
sification task. The video classification network SlowFast 
was used to make a diagnosis using the extracted image 
sequence from the segmented results.17 The final output 
was a prediction of the diagnosis category, which included 
stable IPF, AE-IPF or healthy control (figure  3). The 
algorithms in the study were developed using PyTorch 
framework (V.1.9.0 with CUDA V.10.2), using 4 NVIDIA 
V100 GPUs. For more details, the model was trained for 
60 epochs with a batch size of 16. Adam was chosen as 
the optimiser with learning rate 1e-3 and weight decay 
1e-4. The classical cross-entropy loss was used as the loss 
function.

Radiologist classification
Each HRCT scan in the test sets was visually scored by 3 
fellowship-trained radiologists (with 3–24 years of post-
fellowship experience) on a 4-point ordinal scale corre-
sponding to the 2018 American Thoracic Society guide-
lines for IPF and 2016 International Working Group 
Report for AE-IPF3 19 20 (0=AE-IPF, 1=stable IPF, 2=healthy 
control). The score was used to compare the diagnostic 
opinion of the algorithm. To align with AI diagnostic 
methods, radiologists were provided with complete 
access to all series and images for each HRCT scan in the 
test set, while being blinded to other medical imaging 
and patient history.

Statistical analysis
Statistical analysis was performed in Python (V.3.7). 
The performance of the algorithm was evaluated 
by comparing the areas under the receiver oper-
ating characteristic curves (AUCs) using the paired 
DeLong test. The accuracy, sensitivity, specificity, 
positive predictive value (PPV) and negative predic-
tive value (NPV) were also used to assess the perfor-
mance. Sensitivity, also known as the true positive rate 
(TPR), was calculated as the percentage of positive 

Figure 2  Flowchart of the training framework. The 
samples from high-resolution CT scans after segmentation 
were concatenated and fed to the video classification 
network SlowFast.

Figure 3  The architecture of deep learning algorithm. The 
slow (top) path uses lower frame rates to sample frames 
from the high-resolution CT scans. The fast (bottom) path 
uses higher frame rates for sampling, while including a 
fraction of the channels used by the slow path.



4 Huang X, et al. BMJ Open Respir Res 2024;11:e002226. doi:10.1136/bmjresp-2023-002226

Open access

patients that were correctly identified. Specificity, 
also known as the true negative rate (TNR), was calcu-
lated as the percentage of negative patients that were 
correctly identified. Accuracy was the percentage 
of subjects with TPR and TNR. To evaluate interob-
server agreement between the algorithm and radiol-
ogists, the Cohen’s weighted kappa coefficient (κw) 
was used for an estimation of the probability of each 
diagnosis.22 Weighted κ coefficients were categorised 
as follows: poor (0<κw≤0.20), fair (0.20<κw≤0.40), 
moderate (0.40<κw≤0.60), good (0.60<κw≤0.80) and 
excellent (0.80<κw≤1.00).23 The correlations of algo-
rithm’s categorisation with physiological variables 
(PaO2/FiO2) were evaluated using logistic regression. 
For all comparisons, a two-sided p value threshold 
of 0.05 was considered statistically significant. The 
Python package scikit-learn V.1.0.2 was used for statis-
tical calculation.

RESULTS
Patients characteristics
A total of 306 participants were included after applying 
inclusion and exclusion criteria. 146 patients were 
diagnosed with stable IPF, 97 with AE-IPF and 63 were 
healthy controls. The demographic and clinical infor-
mation of patients with IPF can be found in table  1. 
Briefly, the average age of patients undergoing HRCT 
was 69.2 years, with men accounting for 77.0% of the 
entire cohort. Among them, 54.2% were never-smokers, 
34.6% had concomitant pulmonary infections and 60.1% 
experienced acute exacerbations. The mean PaO2/FiO2 
ratio among patients with available blood gas analysis 
results was 282.4±129.3. In test set 1, 79.7% of patients 
were men and the mean age was 70.7 years, with 55.1% 
never-smokers, 30.5% having concomitant pulmonary 
infections and 23.7% experiencing acute exacerbations. 
The mean PaO2/FiO2 ratio for patients in test set 1 was 
307.7±148.5. In test set 2, 70.7% of patients were men and 
the mean age was 69.9 years, with 63.5% never-smokers, 
39.0% having concomitant pulmonary infections and 

52.4% experiencing acute exacerbations. The mean 
PaO2/FiO2 ratio for patients in test set 2 was 255.8±141.5.

Classification performance
Deep learning algorithm SlowFast and radiologist 
performance were evaluated using AUC, accuracy, 
sensitivity (TPR), specificity (TNR), PPV and NPV. 
The SlowFast model achieved AUC scores of 0.96 and 
0.92 for classifying AE-IPF in test sets 1 and 2, respec-
tively, while the mean radiologist achieved an AUC 
of 0.91 and 0.81, respectively (figure 4A,B). Further-
more, in test set 1, SlowFast achieved an accuracy 
of 93.9%, with a sensitivity of 90.0%, specificity of 
95.7%, PPV of 90.0% and NPV of 95.7%. In test set 2, 
SlowFast achieved an accuracy of 86.5%, with a sensi-
tivity of 80.9%, specificity of 91.8%, PPV of 90.5% and 
NPV of 83.3% (table 2). In comparison, in test set 1, 
radiologists achieved an accuracy of 77.8±9.1%, with 
a sensitivity, specificity, PPV and NPV of 59.8±12.2%, 
87.8±15.2%, 81.1±15.5% and 78.0±7.0%, respec-
tively. In test set 2, radiologists achieved an accuracy 
of 76.4±8.0%, with a sensitivity, specificity, PPV and 
NPV of 69.6±34.0%, 82.6±18.3%, 83.7±15.6% and 
80.3±16.4%, respectively. For classifying stable-IPF, 
the SlowFast model achieved an AUC of 0.97 and 
0.91 in test sets 1 and 2, respectively (figure  4C,D). 
Moreover, the model achieved accuracy, sensitivity, 
specificity, PPV NPV of 93.9%, 93.9%, 93.9%, 93.9%, 
93.9% in test set 1 and 86.5%, 81.6%, 89.7%, 83.8%, 
88.1% in test set 2, respectively (table 2). And radiolo-
gists achieved an AUC of 0.87 and 0.79 (figure 4C,D), 
and accuracy, sensitivity, specificity, PPV, NPV of 
77.8±9.1%, 72.7±24.5%, 84.2±12.9%, 85.4±8.6% and 
76.1±14.9% in test set 1, and 76.4±8.0%, 74.6±23.7%, 
77.6±25.8%, 75.4±18.2% and 85.4±11.0% in test set 2, 
respectively (table 2).

Figure 4E shows an example of HRCT that was accu-
rately identified as AE-IPF by the SlowFast model but 
misclassified as an alternative diagnosis by two radiolo-
gists. There was one case that was accurately classified 

Table 1  Demographic and clinical information of the included patients, split into training, validation and test sets

Training set Validation set Test set 1 Test set 2 Total

Age at diagnosis (years) 67.6±8.2 69.0±4.7 70.7±10.4 69.9±9.2 69.2±8.9

Male (%) 80.5 80.0 79.7 70.7 77.0

Female (%) 19.5 20.0 20.3 29.3 23.0

Never smoker (%) 46.3 50.0 55.1 63.5 54.2

Pulmonary infections (%) 31.7 40.0 30.5 39.0 34.6

Number of AE-IPF (%) 61.0 60.0 23.7 52.4 60.1

PaO2 (mm Hg） 75.6±17.7 75.2±19.2 87.1±30.9 76.0±24.0 78.0±23.4

FiO2 (mm Hg） 0.30±0.17 0.29±0.16 0.34±0.21 0.38±0.22 0.33±0.20

PaO2/FiO2 289.8±107.2 295.2±113.2 307.7±148.5 255.8±141.5 282.4±129.3

AE-IPF, acute exacerbation of idiopathic pulmonary fibrosis.
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as AE-IPF by radiologists but misclassified by SlowFast 
model (figure 4F).

Interobserver agreement
We used Cohen’s weighted kappa coefficient (κw) to assess 
interobserver agreement between the algorithm and radi-
ologists for each diagnostic category.22 We categorised 
weighted kappa coefficient as follows: poor (0<κw≤0.20), 
fair (0.20<κw≤0.40), moderate (0.40<κw≤0.60), good 
(0.60<κw≤0.80) and excellent (0.80<κw≤1.00). In test 
set 1, median interobserver agreement between the algo-
rithm and the majority opinion of the radiologists was 
excellent (weighted κ, κw=0.90), and between each of 
the thoracic radiologists and the majority opinion of the 
radiologists was good (weighted κ, κw=0.65±0.13) table 3 
. Similarly, in test set 2, the algorithm had a good interob-
server agreement with the majority opinion of the radi-
ologists (weighted κ, κw=0.73). Additionally, the median 
interobserver agreement between each of the thoracic 

Figure 4  Classification performance of algorithm and 
radiologists for each HRCT scan on the test set. (A and 
B) ROC curves of algorithm and individual radiologists for 
AE-IPF in test set 1(A) and test set 2(B). (C and D) ROC 
curves of algorithm and individual radiologists for stable-
IPF in test set 1(C) and test set 2(D). (E) Selected slices 
from an HRCT scan were correctly classified as AE-IPF by 
the algorithm but incorrectly classified by two radiologists. 
(F) Selected slices from an HRCT scan were correctly 
classified as AE-IPF by the radiologists but incorrectly 
classified by the algorithm. AE-IPF, acute exacerbations 
of idiopathic pulmonary fibrosis; AUC, area under the 
curve; HRCT, high-resolution CT; ROC, receiver operating 
characteristic.
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radiologists and the majority opinion of the radiologists 
was good (weighted κ, κw=0.69±0.19) table 3.

Correlation between the model’s categorisation and prognosis
To investigate the prognostic value of the deep learning 
model in AE-IPF, logistic regression was used to assess 
the correlations between the model’s categorisation 
and PaO2/FiO2 ratio, which is a prognostic factors of 
AE-IPF.24 The result indicated that both the model’s 
categorisation and the radiologists’ majority opinion 
were the significant predictors of the disease severity of 
IPF (p<0.0001, OR=1.007, 95% CI=1.003 to 1.010 for the 
model’s categorisation, and p<0.0001, OR=1.007, 95% 
CI=1.004 to 1.011 to for radiologists’ majority opinion, 
respectively) (figure 5A,B).

DISCUSSION
In this study, we investigated the potential of the deep 
learning algorithm SlowFast to classify AE-IPF using 
HRCT scans. In addition, we compare the performance 
of this deep learning model to the diagnostic perfor-
mance of radiologists. Our study suggested that the model 
provided almost instantaneous reporting with accuracy 
and reproducibility comparable to human experts (AUC 
0.96 vs 0.91 in test set 1, AUC 0.92 vs 0.81 in test set 2). As 
a fatal complication of IPF, the accurate classification of 
AE-IPF plays a crucial role in improving prognostication, 
directing patient treatment and facilitating research.25–27 
AE-IPF shares similar pathophysiological characteristics 
with acute respiratory distress syndrome, which can be 
triggered by COVID-19 and is considered one of the 
major causes of increased mortality.28 29 However, due to 
the complicated clinical course, making accurate diag-
noses for patients with AE-IPF is a significant challenge 
for clinicians.30 Notably, HRCT-based deep learning 
models and diagnostic biomarkers for ILDs have garnered 

widespread attention in the precision medicine diagnosis 
of IPF.31–35 Under these circumstances, the importance 
of using deep learning models to assist in the accurate 
diagnosis of AE-IPF by radiologists becomes evident, 
which could provide cheap and consistent patient stratifi-
cation for clinical trials, thereby reducing failures during 
screening and costs. Moreover, there is a pressing clin-
ical need to identify contributing or alternative causes of 
decline in patients with GGO and/or consolidation on 
a background of IPF.36 Therefore, predicting the future 
functional decline or the occurrence of AE-IPF would be 
a valuable and unmet objective, which could be addressed 
by the application of advanced deep learning techniques 
to the analysis of HRCT scans.

Previous research has explored the potential of deep 
learning algorithms to classify fibrotic lung disease on 
chest HRCT scans. Walsh et al developed a deep learning 
algorithm for classifying usual interstitial pneumonia 
(UIP) on HRCT based on the neural network architec-
ture, which achieved human-level accuracy (76.4% vs 
70.7% on the test set).14 Alex et al employed a custom 
deep learning algorithm to predict histopathological 
diagnosis (UIP vs non-UIP) from chest CT patterns, 
which provided better diagnostic performance than 
visual evaluation (AUC 0.87 vs 0.80; p=0.03).37 In addi-
tion, Kim et al applied content-based image retrieval 
(CBIR) to improve the diagnostic accuracy for patients 
with ILD (before vs after CBIR, 46.1% vs 60.9%).38 
In the study by Tzouvelekis et al, a machine learning 
software system (Imbio V.1.4.2.) was used to evaluate 
HRCT in patients with non-IPF ILDs receiving myco-
phenolate mofetil. The software demonstrated similar 
performance to specialist radiologists, indicating its 
potential as a valuable diagnostic and prognostic tool 
(ICC 0.73 vs 0.88).39 In addition to providing diagnostic 
support, some studies also focus on the early detection 
or prediction of progressive fibrotic lung disease. In 
the study by Agarwala et al, a deep learning framework 
was conducted to automatically identify ILD patterns 
in HRCT images, achieving an 86% success rate and 
74% sensitivity in sections with lung fibrosis.40 Besides, 
Simon et al developed a deep learning algorithm SOFIA 
and demonstrated that it improved outcome predic-
tion in patients with progressive fibrotic lung disease 
when compared with radiologist evaluation (HR, 1.73; 
p<0.0001; 95% CI=1.40 to 2.14).15 Notably, researchers 
have endeavoured to address two major barriers in the 
management of ILD: the diagnosis of disease subtypes 
and the predicting of patient prognosis. Yang et al 
employed RadImageNet pretrained models to diagnose 
five types of ILD and a transformer model to determine a 

Table 3  Weighted κ values between the algorithm, thoracic radiologists and radiologists’ majority opinion

Algorithm Radiologist 1 Radiologist 2 Radiologist 3 P value

Majority of test set 1 0.90 0.65 0.52 0.78 <0.01
Majority of test set 2 0.73 0.50 0.69 0.88 <0.05

Figure 5  Logistic regression curves of the algorithm 
and radiologists. (A) The logistic regression curve of the 
model’s categorisation and PaO2/FiO2 ratio. (B) The logistic 
regression curve of the radiologists’ categorisation and 
PaO2/FiO2 ratio.



Huang X, et al. BMJ Open Respir Res 2024;11:e002226. doi:10.1136/bmjresp-2023-002226 7

Open access

patient’s 3-year survival rate, which proves to be a useful 
tool to distinguish ILD subcategories and manage the 
long-term progression of patients.41

However, at the moment, there has been limited 
research on using deep learning for the diagnosis of 
AE-IPF, with most deep learning models being trained 
on 2D data. Our study highlights several advantages of 
applying this deep learning model to image analysis in 
fibrotic lung disease. First, our model achieved more 
extraordinary diagnostic performance than visual evalua-
tion. Second, we innovatively used the 3D-video-sequence-
based methodology SlowFast for image analysis on HRCT 
scans, which provides sequential cross-sectional images of 
the lungs. This approach allows for more objective anal-
ysis compared with traditional 2D-image-based models, 
and is the first application of this 3D-video-sequence-
based methodology on HRCT scans. Third, we directly 
compared the performance of our model with that of 
radiologists, and our model demonstrated the potential 
to outperform the established chest CT classification 
scheme based on visual analysis.

It should be noted that our study suffers from a few 
limitations. First, due to the low incidence of AE-IPF in 
the general patient population,42 the number of cases for 
model training and testing was small. Although we have 
employed external validation to confirm the transport-
ability and generalisability of our model, we acknowledge 
the need for a large-scale, multicentre study of AE-IPF, 
which could lead to the development of more robust 
and effective algorithms. Second, only cases of stable 
IPF, AE-IPF and healthy control were covered in this 
study. Therefore, algorithm performance for other ILD 
subtypes is unknown. Further versions of the algorithm 
will include an extension to cover these other patterns. 
Despite this, including healthy control subjects in the data 
set provides a valuable reference point for comparison 
with patients with IPF. This approach may help to iden-
tify HRCT scan features that are specific to the disease 
and facilitate the development of more robust models. 
Third, the algorithm was designed to alleviate the work-
load, improve accuracy and enhance consistency in chal-
lenging diagnoses made by radiologists. Nevertheless, the 
performance of the algorithm was only benchmarked 
against three radiologists, which may not accurately 
represent the entire spectrum of human capabilities.

In conclusion, we have developed a deep learning 
algorithm with similar performance to a human reader 
for classifying AE-IPF on HRCT scans. In principle, this 
algorithm has the potential to provide low-cost, consis-
tent patient stratification and assist in radiological 
decision-making.
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