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Background: Idiopathic pulmonary fibrosis (IPF), a type of interstitial lung disease (ILD), is a chronic disease 
with an unknown etiology. The occurrence of lung cancer (LC) is one of the main causes of death in patients 
with IPF. However, the pathogenesis driving these malignant transformations remains unclear; therefore, this 
study aimed to identify the shared genes and functional pathways associated with both disease conditions.
Methods: Data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases. To identify overlapping genes in both diseases, the “limma” package in R software and 
weighted gene coexpression network analysis (WGCNA) were used. Venn diagrams were used to obtain the 
shared genes. The diagnostic value of the shared genes was assessed using receiver operating characteristic 
(ROC) curve analysis. Gene Ontology (GO) term enrichment was performed on the shared genes between 
lung adenocarcinoma (LUAD) and IPF, and the genes were also functionally enriched using Metascape. A 
protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database. Finally, the link between shared genes and common antineoplastic 
medicines was investigated using the CellMiner database. 
Results: The coexpression modules associated with LUAD and IPF were discovered using WGCNA, and 
148 genes were found to overlap. In addition, 74 upregulated and 130 downregulated overlapping genes 
were obtained via differential gene analysis. Functional analysis of the genes revealed that these genes are 
primarily engaged in extracellular matrix (ECM) pathways. Furthermore, COL1A2, POSTN, COL5A1, 
CXCL13, CYP24A1, CXCL14, and BMP2 were identified as potential biomarkers in patients with LUAD 
secondary to IPF showing good diagnostic values. 
Conclusions: ECM-related mechanisms may be the underlying link between LC and IPF. A total of 7 
shared genes were identified as potential diagnostic markers and therapeutic targets for LUAD and IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, 
fibrotic interstitial lung disease (ILD) of unknown cause (1).  
The median survival time of patients with IPF after 
diagnosis is 3–5 years (2). One of the main features of 
IPF is the overdeposition of extracellular matrix (ECM) 
proteins by activated lung fibroblasts and myofibroblasts, 
which reduces gaseous exchange and eventually leads to 
respiratory failure (3-5). An epidemiological research study 
reported incidence and prevalence rates for IPF of 0.09 and 
1.30 per 10,000 individuals, respectively (6). In addition 
to acute exacerbation (AE) and chronic respiratory failure 
caused by further progression of disease in patients with 
IPF, the occurrence of lung cancer (LC) is also one of the 
main causes of death in these patients (7). Studies have 
reported that the majority of tumors are typically found in 
the lower lobe and lung periphery, and 70% of cancers are 
observed in the fibrotic area of the chest (8). Furthermore, 
research suggests that activated mesenchymal cells play 
a vital role in cancer and fibrosis (9). Other studies also 
indicate that the pathophysiology of IPF is linked to an 
increased malignancy of adenocarcinoma in patients with 
IPF. However, much information about the underlying 
processes remains unknown. 

Clinically, individuals with LC-IPF have few options 
for therapy. Pirfenidone and nintedanib are 2 medications 
currently approved to treat people with this condition 

(10,11). Therefore, understanding the connection between 
IPF and lung adenocarcinoma (LUAD) is vital for the 
discovery of novel biomarkers and targeted therapies for 
treatment.

Advancements in gene chip technology have made it 
possible to assess the expression of hundreds of genes in 
various illnesses, thereby allowing for a more in-depth 
exploration of disease pathogenesis and the discovery of 
novel biomarkers. To the best of our knowledge, this study 
is the first attempt to identify gene modules of shared 
genes in LUAD and IPF using weighted gene coexpression 
network analysis (WGCNA). Gene enrichment analysis was 
also used to investigate the common mechanism in LUAD 
and IPF. We identified the common differential genes 
and coexpression modules in LUAD and IPF using gene 
expression data from The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO). The association 
between acquired modules and differentially expressed 
genes (DEGs) was then investigated, and the shared genes 
of LUAD and IPF were identified. Finally, diagnostic 
biomarkers were obtained using receiver operating 
characteristic (ROC) curve analysis. The study aimed to 
further clarify the molecular mechanism of LUAD–IPF 
and may contribute to the efficient diagnosis and treatment 
of LUAD–IPF. We present this article in accordance with 
the STARD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-22-1522/rc).

Methods

Datasets from TCGA and GEO Databases

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). LUAD-related 
data were downloaded from TCGA and GEO databases. 
A total of 59 normal and 535 tumor samples were used for 
TCGA-LUAD transcriptomic data, whereas 58 normal 
and 58 tumor samples were used in the GSE32863 dataset 
cohort. The IPF gene expression data were obtained from 
the GEO database. The IPF dataset GSE10667 includes 
31 samples from patients with IPF and 15 healthy control 
samples, whereas the IPF dataset GSE24206 includes 17 
IPF samples and 6 healthy control samples.

Weighted gene coexpression network analysis

The WGCNA is a tool for identifying prospective 
biomarkers and therapeutic targets using network-based 
gene screening approaches (12). With the R package 
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(The R Foundation for Statistical Computing, Vienna, 
Austria), WGCNA was used to identify strongly correlated 
gene modules, and the gene expression data profiles of 
GSE32863 and GSE24206 were created as weighted gene 
coexpression modules (13). The adjacency matrix was then 
created, which was then transformed into the topological 
overlap matrix (TOM) and the corresponding dissimilarity 
matrix (1-TOM). Afterward, a cluster formation treemap 
was generated to divide similarly expressed genes into 
multiple gene coexpression modules. The link between 
module eigengene (ME) and clinical features was assessed 
using the Spearman test. In this study, the soft threshold 
in the WGCNA analysis of LUAD and IPF was 11 and 6, 
respectively. 

Validation of shared genes through DEG analysis

Differential gene expression analysis was performed on the 
LUAD and IPF datasets (TCGA-LUAD and GSE10667). 
The DEGs were assessed with the R package “limma”, 
a library for the analysis of gene expression microarray 
data. The cutoff value was absolute log2 fold change ≥1 
and a P value <0.05. The R package “pheatmap” was used 
to plot the heat map while the package “ggplot2” was 
used to draw volcano charts. To generate a heat map, the 
top 20 upregulated and the top 20 downregulated DEGs 
were ranked using adjusted values. A Venn diagram of the 
overlapping DEGs in LUAD and IPF was generated using 
the R package “VennDiagram”.

Function enrichment analysis

Gene Ontology (GO) analysis includes biological processes 
(BP), cellular components (CC), and molecular functions 
(MF). The R packages “clusterProfiler” and “org.Hs.eg.
db” were used, and the thresholds of adjusted P<0.05 
and q value <1 were considered to indicate statistical 
significance. Metascape (https://metascape.org), a web-
based portal designed to provide a comprehensive GO 
analysis of annotated regions, was used. In terms of design 
functions, Metascape combines functional enrichment, 
gene annotation, interactome analysis, and member  
search (14). The pathway and process enrichment analysis 
for the gene list was performed using the ontology sources 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway, Canonical Pathways, and WikiPathways.

Protein-protein interaction (PPI) network construction

PPI networks were constructed using the biological 
database Search Tool for the Retrieval of Interacting Genes 
(STRING; http://string-db.org). The confidence score 
threshold was kept at 0.7.

ROC curve analysis

The R package “pROC” was used for ROC curve analysis, 
which was carried out to determine the sensitivity and 
specificity of the risk score.

Drug sensitivity

RNA-sequencing (RNA-seq) expression profiles and the 
US National Cancer Institute 60 human tumor cell line 
anticancer drug screen (NCI-60) compound activity data 
were retrieved from the tool CellMiner (https://discover.
nci.nih.gov/cellminer/home.do). For further analysis, 
only the drugs approved by the US Food and Drug 
Administration (FDA) were used. The effect of the genes on 
drug sensitivity was analyzed using the R packages “impute”, 
“limma”, “ggplot2”, and “ggpubr”. Drugs with a P<0.05 
were considered to be significantly correlated with shared 
genes. A correlation coefficient greater than 0.7 indicated a 
positive correlation of the shared gene with drug sensitivity.

Statistical analysis

The data were processed using the Perl programming 
language (version 5.32.0, The Perl Foundation, Walnut, 
CA, USA; http://www.perl.org). All statistical analyses were 
performed using R software (version 4.1.2; https://www.
r-project.org/). A P value <0.05 was considered statistically 
significant.

Results

Discovery cohort: construction of weighted coexpression 
networks

The coexpression network of both the GSE32863 and 
GSE24206 datasets had 7 similar modules (available online 
https://cdn.amegroups.cn/static/public/jtd-22-1522-1.xlsx). 
Significant correlations (P<0.05) were found in the LUAD-
GSE32863 dataset among the black module (P=6e−05), 
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blue module (P=1e−11), yellow module (P=2e−24), brown 
module (P=9e–71), red module (P=9e–09), and gray module 
(P=3e−39). LUAD was negatively correlated with genes 
in the brown and red modules, whereas it was positively 
correlated with genes in the black, blue, yellow, and gray 
modules (Figure 1A,1B). A significant correlation was 
observed for the IPF-GSE24206 dataset for the black 
module (P=0.01), blue module (P=2e–07), green module 
(P=0.03), and pink module (P=0.001) (P<0.05). Genetic 
modules in black and blue had negative correlations with 
IPF, whereas those in green and pink were positively 

correlated. From the WGCNA modules of IPF, the blue 
module and the green-yellow module were selected as the 
most important modules (Figure 1C,1D). Furthermore, 
the gray module related to LUAD and the pink and green 
modules related to IPF were selected as the essential critical 
modules. In addition, the gray LUAD module and the pink 
and green IPF modules were used to obtain the overlapping 
genes. A total of 148 genes were found to be overlapping in 
the LUAD and IPF-related modules, which were referred 
to as gene set 1 (GS1) (Figure 2 and available online https://
cdn.amegroups.cn/static/public/jtd-22-1522-1.xlsx).

Figure 1 Weighted gene coexpression network analysis. (A) Cluster dendrogram of coexpressed genes in LUAD. (B) Module-trait 
relationships in LUAD. (C) Cluster dendrogram of coexpressed genes in IPF. (D) Module-trait relationships in IPF. LUAD, lung 
adenocarcinoma; IPF, idiopathic pulmonary fibrosis.
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Figure 2 Venn diagram of the common genes in LUAD and IPF. (A) Upregulated genes in TCGA-LUAD and GSE10667. (B) 
Downregulated genes in TCGA-LUAD and GSE10667. (C) The overlapping genes between the gray modules of LUAD and the pink and 
green modules of IPF. (D, E) Upregulated genes and downregulated genes in GS2 overlapping with genes in GS1, respectively. TCGA, The 
Cancer Genome Atlas; LUAD, lung adenocarcinoma; IPF, idiopathic pulmonary fibrosis; GS1, gene set 1; GS2, gene set 2.

Validated cohort: identification of DEGs

Differential gene analysis was performed using the 
TCGA-LUAD and GSE10667 datasets to validate our 
results further. A total of 1132 DEGs were discovered 
in TCGA-LUAD, with 346 upregulated genes and 786 
downregulated genes (Figure 3A,3B and available online 
https://cdn.amegroups.cn/static/public/jtd-22-1522-1.
xlsx). The GSE10667 dataset included 808 DEGs, with 
439 upregulated genes and 369 downregulated genes  
(Figure 3C,3D and available online https://cdn.amegroups.
cn/static/public/jtd-22-1522-1.xlsx). Furthermore, the 
intersection of upregulated genes obtained by TCGA-
LUAD (n=346) and GSE10667 (n=439), and downregulated 
genes obtained by TCGA-LUAD (n=786) and GSE10667 
(n=369) was determined. Finally,  we obtained 74 
upregulated and 130 downregulated overlapping genes, 
defined as gene set 2 (GS2) (Figure 2B,2C and available 
online https://cdn.amegroups.cn/static/public/jtd-22-1522-
1.xlsx). To further explore the genes related to both diseases, 
74 upregulated and 130 downregulated genes in GS2 were 
crossed with 148 genes in GS1, respectively, and 9 shared 

genes were obtained, including 7 upregulated shared genes 
and 2 downregulated shared genes (Figure 2D,2E and 
available online https://cdn.amegroups.cn/static/public/jtd-
22-1522-1.xlsx). 

Enrichment analysis of coexpressed genes

We used R packages to analyze the GO enrichment of 
GS1 and GS2 to explore their functions (available online 
https://cdn.amegroups.cn/static/public/jtd-22-1522-1.
xlsx). “Extracellular matrix organization”, “Extracellular 
structure organization”, and “External encapsulating 
structure organization” were the top 3 significantly enriched 
GO terms in GS1 and GS2 (Figure 4A,4B). https://cdn.
amegroups.cn/static/public/jtd-22-1522-1.xlsx show the 
enrichment analysis results of GS1 and GS2 output by 
Metascape. The results of functional enrichment analysis 
showed that GS1 was most closely correlated with “NABA 
CORE MATRISOME”, and “NABA MATRISOME-
ASSOCIATED” gene sets, while GS2 was most closely 
associated with “NABA CORE MATRISOME” and 
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Figure 3 Identification of common differentially expressed genes. (A) Cluster heat map of the first 20 DEGs in LUAD. (B) Volcano map 
of the first 20 DEGs in LUAD. (C) Cluster heat map of the first 20 DEGs in IPF. (D) Volcano map of the first 20 DEGs in IPF. FC, fold 
change; LUAD, lung adenocarcinoma; IPF, idiopathic pulmonary fibrosis; DEG, differentially expressed gene.

“NABA SECRETED FACTORS” (Figure 5A,5B). In 
addition, we also performed functional enrichment analysis 
on 9 shared genes and found that the 9 shared genes were 
associated with “NABA CORE MATRISOME” and “NABA 
SECRETED FACTORS” (Figure 5C and available online 
https://cdn.amegroups.cn/static/public/jtd-22-1522-1.xlsx). 
“NABA CORE MATRISOME” was the most significant 
pathway. The results showed that these GO terms and 

“NABA CORE MATRISOME” pathway may be essential 
both in IPF and LUAD.

PPI network construction

An interaction network between proteins encoded by the 
GS1 and GS2 datasets was constructed using the web-
based tool STRING and visualized with Cytoscape (https://
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Figure 4 GO term enrichment of overlapping genes in GS1 and GS2. (A,B) Top 10 enriched GO terms. GO, Gene Ontology; GS1, gene 
set 1; GS2, gene set 2.

cytoscape.org/; available online https://cdn.amegroups.
cn/static/public/jtd-22-1522-1.xlsx). MCODE plugin was 
used to identify gene cluster modules. A total of 71 nodes 
and 125 edges were identified in the GS1 network while 
53 nodes and 52 edges were identified in the GS2 network 
(Figure 6A,6B). 

Evaluation of the diagnostic value of shared genes

The ROC curves of the LUAD-TCGA and GSE10667 
data sets were drawn to evaluate the diagnostic value of 
shared genes by computing the area under the curve (AUC) 
values to test if they could differentiate diseased samples 
from normal samples. The AUC values for COL1A2, 
COL5A1, CRLF1, CXCL13, CXCL14, CYP24A1, POSTN, 
BMP2, and SLCO4C1 were 0.787, 0.868, 0.648, 0.857, 

0.760, 0.886, 0.832, 0.799, and 0.858, respectively, in the 
LUAD-TCGA dataset (Figure 7A-7I). The AUC values for 
COL1A2, COL5A1, CRLF1, CXCL13, CXCL14, CYP24A1, 
POSTN, BMP2, and SLCO4C1 were 0.880, 0.837, 0.951, 
0.770, 0.882, 0.884, 0.897, 0.766, and 0.652, respectively, 
in the GSE10667 dataset (Figure 8A-8I). The ROC analysis 
showed that only the AUC of CRLF1 was less than 0.7 in 
the TCGA-LUAD dataset, and the AUC of other genes 
was greater than 0.7. In addition, the ROC analysis showed 
that only the AUC of SLCO4C1 was less than 0.7 in the 
GSE10667 dataset, and the AUC of other genes was greater 
than 0.7. Finally, the results showed that AUC values of the 
7 shared genes were >0.7, including COL1A2, COL5A1, 
CXCL13 ,  CXCL14 ,  CYP24A1 ,  POSTN ,  and BMP2 , 
indicating that these genes had a high diagnostic value for 
LUAD and IPF.
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Figure 5 The Metascape enrichment analysis. (A) Bar graph of overlapping genes in GS1. (B) Bar graph of overlapping genes in GS2. (C) 
Bar graph of 9 shared genes. GS1, gene set 1; GS2, gene set 2.

Drug sensitivity analysis

We investigated the potential correlation between 
drug sensitivity and the expression of 7 genes using the 
CellMiner database. The top 16 drugs with the most 
significant statistical differences were compiled: POSTN 
expression was positively correlated with the sensitivity of 
zoledronate; CXCL14 expression was negatively correlated 
with 6-mecraptopurine sensitivity; COL1A2 expression 
was positively correlated with zoledronate and abiraterone 
sensitivity but negatively correlated with allopurinol 
and CUDC by-product sensitivity; COL5A1 expression 
was positively correlated with rapamycin, abiraterone, 
lenvatinib, midostaurin, everolimus, and staurosporine 

sensitivity but negatively correlated with CUDC by-product 
sensitivity; CXCL13 expression was positively correlated 
with elesclomol sensitivity; BMP2 expression was positively 
correlated with rebimastat sensitivity; and CYP24A1 
expression was negatively associated with vincristine 
sensitivity (Figure S1 and available online https://cdn.
amegroups.cn/static/public/jtd-22-1522-1.xlsx).

Discussion

Lung cancer is one of the most common complications 
in patients with IPF and is associated with the highest 
mortality rates (15). The prognosis of patients with LC and 
IPF is even worse than that of patients without IPF (16).  
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Figure 6 The PPI network construction. (A) The PPI network constructed with overlapping genes in the GS1. (B) The PPI network 
constructed with overlapping genes in the GS2. PPI, protein-protein interaction; GS1, gene set 1; GS2, gene set 2.
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Figure 7 The ROC curves of 9 shared gene expressions in LUAD. (A-I) The ROC curves of 9 shared gene expressions in LUAD. ROC, 
receiver operator characteristic; LUAD, lung adenocarcinoma; AUC, area under the curve.

More research is needed to elucidate the potential 
mechanisms related to the malignant transition of IPF to 
LC, which would promote a better understanding of lung 
disease transformation mechanisms and provide drug targets 
for treatment. In this study, using WGCNA, we identified 
the gray module related to LUAD and the pink and green 
modules related to IPF as the most relevant modules. There 
are nine overlapped genes in GS1 and GS2. This study 
was the first to identify the shared genes and common 
mechanisms of LUAD and IPF using WGCNA. WGCNA 
and differential expression analysis was carried out to 
examine 9 common genes from 4 datasets to evaluate the 

relationship between LUAD and IPF. Finally, ROC curve 
analysis revealed that 7 genes, including COL1A2, COL5A1, 
POSTN, CXCL13, CXCL14, CYP24A1, and BMP2 (AUC 
>0.7), had good diagnostic value.

“Extracellular matrix organization”, “extracellular 
structure organization”, and “external encapsulating 
structure organization” were the top 3 significantly enriched 
GO terms in GS1 and GS2. Moreover, the Metascape 
database was used to perform functional enrichment analysis 
to investigate the genes associated with these pathways. 
The results of the analysis showed that genes of the GS1 
dataset most closely correlated with genes of “NABA 
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CORE MATRISOME” and “NABA MATRISOME-
ASSOCIATED”, whereas the genes of the GS2 dataset 
are most closely associated with that of “NABA CORE 
MATRISOME” and “NABA SECRETED FACTORS”. 
Functional enrichment analysis results show that 9 shared 
genes are associated with “NABA CORE MATRISOME” 
and “NABA SECRETED FACTORS”. These results 
suggest that “NABA CORE MATRISOME” may have a 
significant impact on gene function enrichment analysis, 
that these GO terms and this pathway may be important in 
LUAD and IPF, and finally, that the ECM-related process 

could be the common pathogenic mechanism linking both 
disease conditions.

Periostin (POSTN) is an ECM protein that affects cell 
adhesion, proliferation, migration, and tissue angiogenesis 
by binding with integrin (17). When combined with 
chemokines,  POSTN can attract neutrophils  and 
macrophages, promoting the establishment of IPF (18). In 
addition, high expression of POSTN was found in many 
cancers, including in non-small cell lung cancer (NSCLC), 
as compared with normal tissues. POSTN may also interact 
directly with other ECM proteins including fibronectin 

Figure 8 The ROC curves of 9 shared gene expressions in IPF. (A-I) The ROC curves of 9 shared gene expressions in IPF. ROC, receiver 
operator characteristic; IPF, idiopathic pulmonary fibrosis; AUC, area under the curve. 
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and tenascin C to create a favorable metastatic niche for 
tumor formation (19). Interestingly, POSTN secreted by 
IPF fibroblasts can promote the proliferation of NSCLC 
cells. In addition, inhibiting the interaction of the POSTN 
receptor weakens the invasiveness of IPF to NSCLC (20). 
Therefore, it can be concluded that POSTN provides a 
potential therapeutic target for patients with NSCLC and 
IPF. In this study, 2 collagen family members including 
collagen type I alpha 2 chain (COL1A2) and collagen type 
V alpha 2 chain (COL5A2) were found to be upregulated. 
Airway ECM is mainly composed of 28 different collagen 
subtypes (21). The products of the COL1A1 and COL1A2 
genes constitute type I collagen. Homeostatic type I 
collagen plays an important role in the pathogenesis of 
IPF. Although collagen V is a minor component of ECM, 
its absence can result in a condition called fibrotic stroma. 
The increase of collagen deposition in the alveolar wall 
leads to continuous destruction of the alveolar structure 
and increases the stiffness of ECM (22). Fibroblasts and 
cancer cells both produce type I collagen. In LC cell lines, 
type I collagen can also induce epithelial–mesenchymal 
transition. In NSCLC and esophageal squamous cell 
carcinoma (ESCC), COL1A2 is highly expressed. Studies 
have found that COL5A2 is upregulated in pulmonary 
neuroendocrine tumors (PNETs) (23). Cytokine receptor-
like factor 1 (CRLF1) is a member of the interleukin-6 
(IL-6) cytokine family (24). In IPF, CRLF1 enhances 
T-helper 1 and T-regulatory cells in the lung, increases 
inflammatory response, and reduces pulmonary fibrosis (25).  
By stimulating the MAPK/ERK and PI3K/AKT pathways, 
CRLF1 enhances the malignant phenotype of papillary 
thyroid cancer (26). However, a low expression of CRLF1 
has been observed in those with colorectal cancer. 
Furthermore, CRLF1 inhibits tumorigenesis and metastasis, 
whereas miR-3065-3p promotes stemness and metastasis by 
targeting CRLF1 in colorectal cancer (27). Nevertheless, 
CRLF1 has not been reported in LC. Cytochrome P450 
family 24, subfamily A, member 1 (CYP24A1) plays a key 
role in vitamin D catabolism and calcium homeostasis. 
Compared with normal lung tissue, CYP24A1 is highly 
expressed in LUAD (28). High CYP24A1 expression 
enhances LC cell growth and migration and is associated 
with low survival rates in patients with LC (29). Chloride 
channels have a crucial function in the transition of 
fibroblasts to myofibroblasts, with myofibroblasts gaining 
the ability to migrate and secrete ECM proteins. Studies 
have shown that bone morphogenetic protein 2 (BMP2) 
inhibits chloride channel activity (30-32). Through 

signaling, BMP2 stimulation of lung fibroblasts affects the 
expression of genes in the BMP pathway and BMP target 
genes. The activation of POSTN is particularly intriguing, 
as it suggests that lung fibroblasts have a gene expression 
profile similar to that of carcinoma-associated fibroblasts 
(CAFs) (33). BMP2 research is conflicting and complicated. 
Studies have reported that BMP2 is downregulated in 
LUAD relative to normal tissues (34,35). 

Pulmonary fibrosis and LC are linked through genetic, 
molecular, and cellular processes, such as myofibroblast/
interstitial transformation and myofibroblast proliferation. 
After being stimulated by IPF, fibroblasts release 
transforming growth factor-β (TGF-β) and cytokines to 
promote their proliferation. Furthermore, several cytokines 
play a role in the development of NSCLC (16,36). The 
Wnt/-catenin pathway and the TGF-a pathway are 
both active in IPF-activated fibroblasts and have a role 
in NSCLC development (37,38). IPF produces excess 
myofibroblasts, and these activated myofibroblasts secrete 
excessive ECM (39). Research suggests that fibroblasts 
and/or myofibroblasts are important regulators of 
migration and proliferation of malignant epithelial cells 
in tumours (9). Similar to IPF, CAFs are also involved in 
lung carcinogenesis. Both myofibroblasts and CAF exhibit 
mesenchymal-like features and have a heterogeneous 
phenotype (40). Both tumor cells and stromal cells can 
generate the proteins that constitute the tumor ECM (41). 
The tumor microenvironment consists of tumor cells, 
stromal cells, ECM, and immune cells (42). Tumorigenesis 
and metastasis are influenced by the intricate interactions 
between tumor cells, stromal cells, ECM, and other 
components of the tumor microenvironment (43). The 
ECM acts as a reservoir for growth factors and cytokines, 
ECM-remodeling enzymes, and essential ECM components 
(fibronectins, collagen, laminins, proteoglycans, etc.). The 
progression of the tumor will be influenced by changes in 
the ECM structure and biophysical characteristics. Excessive 
ECM deposition is a characteristic of malignancies with 
a bad prognosis. PF-activated fibroblasts have been 
discovered to release POSTN, promoting the growth of LC 
cells. Furthermore, POSTN, which is produced by CAFs, 
plays a significant role in the development of cancer (44). 
Although there are many possible origins of CAFs, they are 
largely thought to arise from resident tissue fibroblasts (42). 
Therefore, IPF-activated fibroblasts could be one source 
of CAFs in IPF-LC. Thus, the production of stromal cell 
proteins by activated fibroblasts in the lungs of patients with 
IPF may cause LC. In addition, we speculate that ECM-
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related mechanisms play an important role in this process.
Pirfenidone and nintedanib are 2 drugs approved for IPF 

treatment and may prolong the survival time and reduce 
the incidence rate of those with LC (10). Nintedanib was 
approved as a second-line therapeutic drug for NSCLC, 
and pirfenidone has demonstrated antitumor activity in 
preclinical studies of NSCLC (45,46). Nintedanib is a 
tyrosine kinase inhibitor which inhibits angiogenesis by 
blocking various growth factors and has been used to treat 
both NSCLC and IPF (47). Pirfenidone inhibits TGF-β1–
induced type I collagen overexpression in LC (48). Given 
the mechanistic similarities between LC and IPF and the 
coexistence of NSCLC and IPF, specific drugs need to be 
investigated. The CellMiner database analysis in this study 
indicated that the shared genes were associated with many 
drugs that have already been approved by the FDA for the 
treatment of cancer. These drugs may offer new possibilities 
for the treatment of patients with LC-IPF.

Conclusions

We determined that ECM-related mechanisms may be 
the underlying link between LC and IPF. Moreover, 7 
shared genes were identified as potential diagnostic markers 
and therapeutic targets for LUAD and IPF. Our findings 
provide further insight into the interplay between LUAD 
and IPF and highlight potential drug targets for treatment.
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