
•	 Idiopathic	pulmonary	fibrosis	(IPF)	is	a	progressive	fibrosing	interstitial	lung	
disease	characterized	by	decline	in	lung	function.

•	 MicroRNAs	are	small	non-coding	RNA	molecules	with	functions	in	gene	
silencing	or	post-transcriptional	gene	regulation.	Altered	microRNA	
expression	has	been	implicated	in	the	pathogenesis	of	IPF.1 

•	 Further	investigation	is	needed	to	understand	the	relationships	between	
messenger	RNAs	(mRNAs)	and	microRNAs	and	progression	of	IPF.

•	 To	investigate	the	relationship	between	mRNA-microRNA	interactions	and	
forced	vital	capacity	(FVC)	in	patients	with	IPF.

Subjects 
•	 The	cohort	was	drawn	from	the	Idiopathic	Pulmonary	Fibrosis	Prospective	

Outcomes	(IPF-PRO)	Registry,	a	multicenter	US	registry	that	enrolled	patients	
with	IPF	that	was	diagnosed	or	confirmed	at	the	enrolling	center	in	the	past	 
6	months.2

•	 These	analyses	were	based	on	samples	taken	at	enrollment	from	272	
subjects	who	had	whole	blood	mRNA	and	plasma	microRNA	sequencing	
data	that	met	quality	control	filters.

Analyses
•	 T-tests	were	used	to	determine	differential	mRNA	and	microRNA	expression	

between	subjects	with	FVC	%	predicted	in	the	lowest	tertile	(<63.7%	
predicted;	n=90)	and	the	highest	tertile	(>76.8%	predicted;	n=92).	

•	 We	then	used	Pearson	correlation	to	identify	negatively	correlated	mRNA-
microRNA	pairs	among:

	 –	 mRNA	transcripts	with	an	absolute	fold	change	>1	and	p≤0.05	for	the	 
		 difference	between	lowest	versus	highest	tertiles	of	FVC	%	predicted.

	 –	 microRNAs	with	p≤0.05	for	the	difference	between	lowest	versus	highest	 
		 tertiles	of	FVC	%	predicted.

•	 Functional	and	network	analyses	were	used	to	visualize	top	mRNA-microRNA	
connections.	

•	 mRNA-microRNA	interaction	analyses	were	performed	in	R	using	miRComb;3 
p-values	were	adjusted	for	multiple	testing.

•	 Pathways	analysis	was	performed	using	Ingenuity	Pathway	Analysis	(QIAGEN	
Inc.).	Databases	searched	were	miRTarbase,	microCOSM,	mirDB,	targetScan,	
and	mirWalk2.

•	 We	identified	a	number	of	mRNA-microRNA	pairs	that	were	
differentially	expressed	in	patients	with	IPF	in	the	lowest	versus	the	
highest	tertile	of	FVC	%	predicted.	

•	 This	supports	the	idea	that	microRNA	regulation	may	be	related	to	 
the	progression	of	IPF.

•	 Ongoing	studies	will	assess	whether	circulating	microRNAs	and	
their	related	mRNAs	are	associated	with	a	greater	risk	of	disease	
progression	in	patients	with	IPF.
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Baseline characteristics of subjects in the highest and lowest tertiles of FVC % predicted

Tertile 1: 
FVC <63.7% predicted 

(n=90)

Tertile 3: 
FVC >76.8% predicted 

(n=92)

Age, years 69.5	(64.0,	73.0) 71.0	(65.0,	75.5)

Male 70	(78%) 64	(70%)

White 83	(92%) 87	(95%)

Smoking

Past 58	(64%) 64	(70%)

Never 32	(36%) 27	(29%)

Current 0 1	(1%)

Values	are	median	(Q1,	Q3)	or	n	(%).

Subjects

Differential expression of mRNAs and microRNAs
•	 Of	35628	mRNAs	and	2576	microRNAs	sequenced,	2441	and	214,	respectively,	met	the	

criteria	for	differential	expression	between	subjects	in	the	lowest	versus	the	highest	tertile	of	
FVC	%	predicted.	

•	 A	cluster	heatmap	showed	sub-clusters	of	expression	among	the	top	mRNA-microRNA	pairs	
from	the	differentially	expressed	mRNAs	and	microRNAs.

•	 The	mRNA-microRNA	pair	with	the	strongest	negative	correlation	was	the	nucleotide	binding	
protein	1	(NUBP1)	transcript	and	the	microRNA	hsa-mir-5192	(r=-0.37;	p=1.03e-07):

mRNA-microRNA pair with the strongest negative correlation

Functional analyses
MicroRNAs with ≥2 mRNA targets with adjusted p≤0.05, and cumulative percentage of 2441 
differentially expressed mRNAs regulated by each microRNA

Network analyses

Network of mRNA-microRNA interactions with adjusted p≤0.05 

Pathways analysis

mRNA-microRNA pairs with a confirmed connection in ≥1 database searched

Top mRNA-microRNA pairs from the mRNAs and microRNAs differentially expressed between 
subjects in the highest and lowest tertiles of FVC % predicted

cpm,	counts	per	million.
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IGF-1,	insulin-like	growth	factor	1;	 
Nrf2,	nuclear	factor	E2-related	factor	2.

Darker	shades	in	squares	or	circles	indicate	stronger	up-	or	downregulation.	Darker	shades	of	arrows	indicate	connections	were	found	in	a	greater	
number	of	the	databases	searched.

Pathways	analysis	suggested	alterations	in	pathways	previously	
associated	with	the	pathogenesis	of	IPF	or	lung	injury:	aldosterone	

signaling,4	Nrf2-mediated	antioxidant	response,5	and	IGF-1	signaling6
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